ORGANIC
LETTERS
2009
Vol. 11, No. 4
799-802
Unexpected Orthogonality of
S-Benzoxazolyl and S-Thiazolinyl
Glycosides: Application to Expeditious
Oligosaccharide Assembly
Sophon Kaeothip, Papapida Pornsuriyasak, Nigam P. Rath, and
Alexei V. Demchenko*
Department of Chemistry and Biochemistry, UniVersity of MissourisSt. Louis,
One UniVersity BouleVard, St. Louis, Missouri 63121
Received November 26, 2008
ABSTRACT
Thorough mechanistic studies of the alkylation pathway for the activation of glycosyl thioimidates have led to the development of the “thioimidate-
only orthogonal strategy”. Discrimination among S-thiazolinyl (STaz) and S-benzoxazolyl (SBox) anomeric leaving groups was achieved by
fine-tuning of the activation conditions. Preferential glycosidation of a certain thioimidate is not simply determined by the strength of activating
reagents; instead, the type of activationsdirect vs indirectscomes to the fore and plays the key role.
Traditional linear approaches to oligosaccharide assembly are
often cumbersome, and consequently, the availability of com-
plex glycostructures remains insufficient to address the chal-
lenges of modern glycosciences.1 Recent improvements in
strategies for oligosaccharide assembly, have significantly
shortened the number of synthetic steps required by minimizing
protecting group manipulations between glycosylation steps.2
One of the most flexible assembly strategies is the orthogonal
concept.3 Unlike the armed-disarmed approach,4 the orthogonal
activation is not reliant on the nature of the protecting groups,
which can interfere with stereoselectivity. The only requirement
for the orthogonal approach is a set of two orthogonal leaving
groups and a pair of suitable activators. Unfortunately, this
simple concept is still limited to the following two examples:
Ogawa’s S-ethyl and fluoride,3 and thioimidate S-thiazolinyl
(STaz) and S-alkyl/aryl.5 In addition, a related, albeit less
flexible, semiorthogonal approach with the use of S-ethyl and
O-pentenyl glycosides was reported6 and was recently extended
to fluoride/pentenyl leaving groups.7 OVerall, the orthogonal
(3) Kanie, O.; Ito, Y.; Ogawa, T. J. Am. Chem. Soc. 1994, 116, 12073–
12074. (a) Ito, Y.; Kanie, O.; Ogawa, T. Angew Chem. Int. Ed. 1996, 35,
2510–2512.
(1) Prescher, J. A.; Bertozzi, C. R. Nature Chem. Biol. 2005, 1, 13–21.
(a) Galonic, D. P.; Gin, D. Y. Nature 2007, 446, 1000–1007. (c) Seeberger,
P. H.; Werz, D. B. Nature 2007, 446, 1046–1051.
(4) Fraser-Reid, B.; Udodong, U. E.; Wu, Z. F.; Ottosson, H.; Merritt,
J. R.; Rao, C. S.; Roberts, C.; Madsen, R. Synlett 1992, 927–942.
(5) Demchenko, A. V.; Pornsuriyasak, P.; De Meo, C.; Malysheva, N. N.
Angew. Chem., Int. Ed. 2004, 43, 3069–3072. (a) Pornsuriyasak, P.;
Demchenko, A. V. Chem.sEur. J. 2006, 12, 6630–6646.
(6) Demchenko, A. V.; De Meo, C. Tetrahedron Lett. 2002, 43, 8819–
8822.
(2) Nicolaou, K. C.; Mitchell, H. J. Angew. Chem., Int. Ed. 2001, 40,
1576–1624. (a) Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem., Int. Ed.
Engl. 1996, 35, 1380–1419. (b) Roy, R.; Andersson, F. O.; Letellier, M.
Tetrahedron Lett. 1992, 33, 6053–6056. (c) Boons, G. J.; Isles, S.
Tetrahedron Lett. 1994, 35, 3593–3596. (d) Douglas, N. L.; Ley, S. V.;
Lucking, U.; Warriner, S. L. J. Chem. Soc., Perkin Trans. 1 1998, 51–65.
(e) Zhang, Z.; Ollmann, I. R.; Ye, X. S.; Wischnat, R.; Baasov, T.; Wong,
C. H. J. Am. Chem. Soc. 1999, 121, 734–753.
(7) Lopez, J. C.; Uriel, C.; Guillamon-Martin, A.; Valverde, S.; Gomez,
A. M. Org. Lett. 2007, 9, 2759–2762.
10.1021/ol802740b CCC: $40.75
Published on Web 01/22/2009
2009 American Chemical Society