between ꢀ-oxo esters, or their derivatives, with hydrazines.8
Other methods are reported by air oxidation of 1,2-hydrazino-
hydrazones,9 palladium-catalyzed carbonylation of 1,2-diaza-
1,3-buta-dienes,10 or rearrangement of an oxadiazole derived
from a 2-cyanoacetanilide.11
1H-pyrazoles and isoxazoles from 1-carbamyl-1-oximylcy-
clopropanes, in the presence of POCl3/DMF (Vilsmeier
reagent) and POCl3/CH2Cl2, respectively.17 Thus, in con-
nection with these previous studies and following on from
our research on the synthesis of highly valuable heterocycles
through an oxidative processes, we have prepared a series
of 1-carbamoyl-1-oximyl cycloalkanes from ꢀ-oxo amide
derivatives and examined their reactivity toward the envi-
ronmentally friendly reagent PIFA. As a result of these
studies, we have developed a facile and efficient synthesis
of spiro-fused cycloalkano-(C4)-pyrazolin-5-one N-oxides via
PIFA-mediated intramolecular N-N bond formation.
The substrates, 1-carbamoyl-1-oximylcycloalkanes 1, were
prepared by the reaction of 1-acyl-1-carbamyl cycloalkanes
with hydroxylamine (NH2OH·HCl) in the presence of NaOAc
in ethanol at room temperature in high yields (up to 95%).18
We then selected cyclopropyl oxime 1a from a series of
substrates 1 (see Table 1) as the model compound to examine
On the other hand, hypervalent iodine reagents have been
extensively used as the oxidation reagents in synthetic
organic chemistry.12 One such reagent, phenyliodine(III)-
bis(trifluoroacetate) (PIFA) has attracted considerable atten-
tion of research due to its ready availability, low toxicity,
ease of handling, and reactivity similar to that of heavy metal
reagents.13 Its efficient utilization in metal-free transforma-
tions relies on both the extremely mild reaction conditions
required and its ability to oxidize chemoselectively a wide
range of functionalities such as phenols, amines, sulfides,
and carbonyl compounds. Recently, Tellitu and co-workers
developed novel metal-free approaches to the synthesis of
nitrogen-containing heterocycles using properly substituted
amides and amines as synthetic precursors via a PIFA-
mediated oxidization process.14
During the course of our studies on the synthesis of carbo-
and heterocycles based on ꢀ-oxo amide derivatives,15 we
successfully achieved efficient synthesis of substituted isothi-
azol-3(2H)-ones and pyrrolin-4-ones from readily available
1-carbamoyl ketene dithioacetals and enaminones, respec-
tively, in the presence of PIFA, in which an intramolecular
N-S or N-C bond is formed.16 Very recently, we have
reported a one-pot divergent synthesis of fully substituted
a
Table 1. Reactions of 1 with PIFA/TFA in CH2Cl2
entry
1
n
R1
R2
2
yieldb (%)
1
2
3
4
5
6
7
8
1a
1b
1c
1d
1e
1f
1g
1h
1i
1j
1k
1l
1m
1n
1o
1p
1
1
1
1
1
1
1
3
3
3
3
3
3
3
3
3
Me
Me
Me
Me
Me
Me
Me
Me
Me
Me
Me
Me
Me
Me
C6H5
Me
C6H5
2a
2b
2c
2d
2e
2f
2g
2h
2i
2j
2k
2l
2m
2n
2o
2p
80
73
71
68
75
81
72
89
84
85
83
91
94
88
92
87
(7) Tomlin, G., Ed. The Pesticide Manual, 10th ed.; British Crop
Protection Pub.: Surrey, 1991.
4-MeC6H4
4-MeOC6H4
4-ClC6H4
2-MeC6H4
2-MeOC6H4
2,4-Me2C6H3
C6H5
4-MeC6H4
4-MeOC6H4
4-ClC6H4
2-MeC6H4
2-MeOC6H4
2,4-Me2C6H3
C6H5
(8) (a) Ghosh, C. K.; Mukhopadhyay, K. K. Synthesis 1978, 779–781.
(b) Chantegrel, B.; Gelin, S. Synthesis 1985, 548–550. (c) Colotta, V.;
Cecchi, L.; MeLani, F.; Palazzino, G.; Filacchioni, G. Tetrahedron Lett.
1987, 28, 5165–5168. (d) Colotta, V.; Cecchi, L.; Melani, F.; Palazzino,
G.; Filacchioni, G.; Martini, C.; Giannaccini, G.; Lucacchini, A. J. Pharm.
Sci. 1989, 78, 239–242. (e) Abass, M.; Mostafa, B. B. Bioorg. Med. Chem.
2005, 13, 6133–6144.
(9) Attanasi, O. A.; Crescentini, L. D.; Filippone, P.; Foresti, E.;
Mantallini, F. J. Org. Chem. 2000, 65, 2820–2823.
9
10
11
12
13
14
15
16
(10) Boeckman, R. K., Jr.; Reed, J. E.; Ge, P. Org. Lett. 2001, 3, 3651–
3653.
(11) Kim, C.-K.; Zielinski, P. A.; Maggiulli, C. A. J. Org. Chem. 1984,
49, 5247–5250.
(12) For recent reviews, see: (a) Zhdankin, V. V.; Stang, P. J. Chem.
ReV. 2002, 102, 2523–2584. (b) Stang, P. J. J. Org. Chem. 2003, 68, 2997–
3008. (c) Wirth, T. Top. Curr. Chem. 2003, 224, 185–208. (d) Tohma, H.;
Kita, Y. AdV. Synth. Catal. 2004, 346, 111–124. (e) Moriarty, R. M. J.
Org. Chem. 2005, 70, 2893–2903. (f) Wirth, T. Angew. Chem., Int. Ed.
2005, 44, 3656–3665.
Me
a Reagents and conditions: 1 (1.0 mmol), PIFA (1.1 mmol), TFA (3.0
mmol), CH2Cl2 (11 mL), 0 °C, 1.5-4.5 h. b Isolated yield.
(13) (a) Kikugawa, Y.; Kawase, M. Chem. Lett. 1990, 581–582. (b)
Wardrop, D. J.; Basak, A. Org. Lett. 2001, 3, 1053–1056. (c) Wardrop,
D. J.; Burge, M. S. Chem. Commun. 2004, 1230–1231.
(14) (a) Serna, S.; Tellitu, I.; Dom´ınguez, E.; Moreno, I.; SanMart´ın,
R. Tetrahedron Lett. 2003, 44, 3483–3486. (b) Serna, S.; Tellitu, I.;
Dom´ınguez, E.; Moreno, I.; SanMart´ın, R. Tetrahedron 2004, 60, 6533–
6539. (c) Correa, A.; Tellitu, I.; Dom´ınguez, E.; Moreno, I.; SanMart´ın, R.
J. Org. Chem. 2005, 70, 2256–2264. (d) Correa, A.; Tellitu, I.; Dom´ınguez,
E.; SanMart´ın, R. J. Org. Chem. 2006, 71, 3501–3505. (e) Serna, S.; Tellitu,
I.; Dom´ınguez, E.; Moreno, I.; SanMart´ın, R. Org. Lett. 2005, 7, 3073–
3076. (f) Correa, A.; Tellitu, I.; Dom´ınguez, E.; SanMart´ın, R. J. Org. Chem.
2006, 71, 8316–8319. (g) Correa, A.; Tellitu, I.; Dom´ınguez, E.; SanMart´ın,
R. Org. Lett. 2006, 8, 4811–4813. (h) Tellitu, I.; Serna, S.; Herrero, M. T.;
Moreno, I.; Dom´ınguez, E.; SanMart´ın, R. J. Org. Chem. 2007, 72, 1526–
1529.
its reaction behavior in the presence of PIFA and trifluoro-
acetic acid (TFA).
Upon treatment of 1a with 1.5 equiv of PIFA and 3.0 equiv
of TFA in CH2Cl2 at room temperature for 1.5 h, the reaction
proceeded smoothly as indicated by TLC and furnished a
product after workup and purification by column chroma-
(16) (a) Huang, J.; Lu, Y.; Qiu, B.; Liang, Y.; Li, N.; Dong, D. Synthesis
2007, 2791–2796. (b) Huang, J.; Liang, Y.; Pan, W.; Yang, Y.; Dong, D.
Org. Lett. 2007, 9, 5345–5348.
(15) For our recent work, see: (a) Pan, W.; Dong, D.; Wang, K.; Zhang,
J.; Wu, R.; Xiang, D.; Liu, Q. Org. Lett. 2007, 9, 2421–2423. (b) Xiang,
D.; Wang, K.; Liang, Y.; Zhou, G.; Dong, D. Org. Lett. 2008, 10, 345–
348. (c) Zhang, R.; Liang, Y.; Zhou, G.; Wang, K.; Dong, D. J. Org. Chem.
2008, 73, 8089–8092.
(17) Wang, K.; Xiang, D.; Liu, J.; Pan, W.; Dong, D. Org. Lett. 2008,
10, 1691–1694.
(18) See Supporting Informationand ref 17.
1016
Org. Lett., Vol. 11, No. 4, 2009