4906 Organometallics 2009, 28, 4906–4908
DOI: 10.1021/om900578d
A Metal-Templated 4 + 2 Cycloaddition Reaction of an Alkyne and a
Diyne To Form a 1,2-Aryne
Jordan A. Tsui and Brian T. Sterenberg*
Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina,
Saskatchewan, Canada S4S 0A2
Received July 5, 2009
Summary: Coordination of bis-phosphino diyne substrates to
mixed platinum and tungsten metal templates results in a
templated 4 þ 2 alkyne-diyne cycloaddition reaction to form
an aryne intermediate, which abstracts two H atoms to form an
arene ring. The aryne intermediate can also be trapped via a
Diels-Alder reaction with furan.
alkene cycloaddition reactions, including Diels-Alder reac-
tions4 and alkene photodimerization.5 However, applica-
tions to alkyne cycloaddition are limited.6 Previously,
Martin-Redondo et al. showed that coordination of the
phosphine-substituted diyne Ph2PC4PPh2 to PtCl2 frag-
ments effectively templates diyne cycloaddition reactions
to form cyclooctadienediyne and cyclododecatrienetriyne
rings.7 Later, by using W(CO)4 templates, we showed that
the critical parameter controlling cycloaddition is distance
between the diyne terminal carbons (R to P) and that the
Templated reactions are those in which substrates are held
into a specific geometry via interaction with a template such
that they react in a controlled fashion.1 Substrate-template
interactions can involve many types of bonds; examples
include covalent bonds, coordinative bonds to metals,
hydrogen bonds, and π-π interactions.2 Our research is
focused on transition-metal templates, which provide well-
defined geometries, tunable bond lengths, easy substrate-
template complex formation, and straightforward template
removal. Metal templates have been used extensively in the
synthesis of macrocycles, catenanes, and rotaxanes.2,3 We
are using transition metals to template alkene and alkyne
cycloaddition reactions. In these reactions, the template-
substrate interaction is remote from the reactive alkynes. The
cycloadditions are not metal-catalyzed, nor do the alkynes
interact directly with the metals. Such metal templation has
been used to control regioselectivity and stereochemistry of
˚
threshhold for reactivity is about 3.2 A. This carbon-carbon
distance is in turn controlled by the M-P distance.8 The
small Pt-P bond lengths of the PtCl2 complex bring the
diynes into close proximity, inducing reaction. In contrast,
the longer M-P bond lengths in the W(CO)4 complexes hold
the substrates far enough apart that the diynes are unreac-
tive. Here we describe mixed tungsten-platinum template
complexes, in which two diynes are held in close proximity at
one end by PtX2, while the other ends are held further apart
by W(CO)4, and we show how careful choice of the metal
template fragment allows us to control the nature of the
cycloaddition reaction.
The mixed template complexes are formed via sequential
addition of the W(CO)4 precursor followed by the PtX2 pre-
cursor. The compound [{W(CO)4}(Ph2PC4PPh2-κ1P)2] (1) is
first prepared by reaction of [W(CO)4(2-pic)2] with excess
Ph2PC4PPh2.8 In 1, two substrates are coordinated to one
tungsten center, and the other end of each bis-phosphine
dangles. Compound 1was first combined with Pt(CH3)2(COD)
(COD= cyclooctadiene) and reacts to form [{W(CO)4}-
{Pt(CH3)2}(μ-Ph2PC4PPh2)2] (2) (Scheme 1). This complex
was not expected to be reactive toward cycloaddition, on the
basis of the fact that the templated complex with two Pt(CH3)2
templates is unreactive.7 This prediction was borne out, and 2
does not react, even when heated. An ORTEP diagram of 2 is
shown in Figure 1.
*To whom correspondence should be addressed. E-mail: brian.
€
(1) (a) Hoss, R.; Vogtle, F. Angew. Chem., Int. Ed. 1994, 33, 375.
(b) Anderson, S.; Anderson, H. L.; Sanders, J. K. M. Acc. Chem. Res. 1993,
26, 469. (c) MacGillivray, L. R.; Papaefstathiou, G. S.; Friscic, T.; Varshney,
D. B.; Hamilton, T. D. Top. Curr. Chem. 2004, 284, 201.
ꢀ
(2) Arico, F.; Badjic, J. D.; Cantrill, S. J.; Flood, A. H.; Leung,
K. C.-F.; Liu, Y.; Stoddart, J. F. Top. Curr. Chem. 2005, 249, 203.
(3) (a) Laughrey, Z. R.; Gibb, B. C. Top. Curr. Chem. 2005, 249, 67.
(b) Crowley, J. D.; Goldup, S. M.; Lee, A.-L.; Leigh, D. A.; McBurney, R. T.
Chem. Soc. Rev. 2009, 38, 1530.
(4) (a) Leung, P.-H. Acc. Chem. Res. 2004, 37, 169. (b) Yeo, W.-C.;
Chen, S.; Tan, G.-K.; Leung, P.-H. J. Organomet. Chem. 2007, 692, 2539.
(d) Tan, K.-W.; Liu, F.; Li, Y.; Tan, G.-K.; Leung, P.-H. J. Organomet. Chem.
2006, 691, 4753. (e) Yeo, W.-C.; Tan, G.-K.; Koh, L. L.; Leung, P.-H. Eur. J.
Inorg. Chem. 2005, 2005, 4723.
(5) (a) Papaefstathiou, G. S.; Zhong, Z.; Geng, L.; MacGillivray,
L. R. J. Am. Chem. Soc. 2004, 126, 9158. (b) Toh, N. L.; Nagarathinam, M.;
Vittal, J. J. Angew. Chem., Int. Ed. 2005, 44, 2237. (c) Chu, Q.; Swenson,
D. C.; MacGillivray, L. Angew. Chem., Int. Ed. 2005, 44, 3569.
(d) Nagarathinam, M.; Vittal, J. J. Angew. Chem., Int. Ed. 2006, 45, 4337.
(e) Papaefstathiou, G. S.; Georgiev, I. G.; Friscic, T.; MacGillivray, L. R.
Chem. Commun. 2005, 3974.
Reaction of 1 with PtCl2(COD) also leads to the rapid
formation of the mixed template complex [{W(CO)4}-
{PtCl2}(μ-Ph2PC4PPh2)2] (3), which has been characterized
spectroscopically.9 In CH2Cl2 solution, 3 starts turning black
within minutes and decomposes within 24 h to a complex
mixture. However, if 3 is formed in THF rather than CH2Cl2,
(6) (a) Carty, A. J.; Taylor, N. J.; Johnson, D. K. J. Am. Chem. Soc.
1979, 101, 5422. (b) Johnson, D. K.; Rukachaisirikul, T.; Sun, Y.; Taylor,
N. J.; Canty, A. J.; Carty, A. J. Inorg. Chem. 1993, 32, 5544. (c) García, A.;
(7) Martin-Redondo, M. P.; Scoles, L.; Sterenberg, B. T.; Udachin,
K. A.; Carty, A. J. J. Am. Chem. Soc. 2005, 127, 5038.
(8) Tsui, J. A.; Bolton, T. M.; Sterenberg, B. T. Can. J. Chem. 2009,
87, 197.
ꢀ
Gomez, J.; Lalinde, E.; Moreno, M. T. Organometallics 2006, 25, 3926.
ꢀ
ꢀ
(d) Charmant, J. P. H.; Fornies, J.; Gomez, J.; Lalinde, E.; Moreno, M. T.;
Orpen, A. G.; Solano, S. Angew. Chem., Int. Ed. 1999, 38, 3058. (e) Ara, I.;
Fornies, J.; García, A.; Gomez, J.; Lalinde, E.; Moreno, M. T. Chem. Eur. J.
2002, 8, 3698. (f) Berenguer, J. R.; Bernechea, M.; Fornies, J.; Garcia, A.;
Lalinde, E.; Moreno, M. T. Inorg. Chem. 2004, 43, 8185.
(9) Spectroscopic data for 3: 1H NMR δ 7.0-8.0 (m, Ph); 31P NMR δ
1.5 (s, 1JWP = 241 Hz, WP), -10.8 (s, 1JPtP = 3710 Hz, PtP); IR (cast,
cm-1) ν(CtC) 2089 w, ν(CO) 2024 s, 1930 s, 1904 vs.
ꢀ
ꢀ
r
pubs.acs.org/Organometallics
Published on Web 08/11/2009
2009 American Chemical Society