ORGANIC
LETTERS
2009
Vol. 11, No. 4
863-866
Star-Shaped D-π-A Conjugated
Molecules: Synthesis and Broad
Absorption Bands
Jin-Liang Wang, Zheng-Ming Tang, Qi Xiao, Yuguo Ma,* and Jian Pei*
Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratories of Bioorganic
Chemistry and Molecular Engineering and of Polymer Chemistry and Physics of Ministry of
Education, College of Chemistry, Peking UniVersity, Beijing 100871, China
jianpei@pku.edu.cn; ygma@pku.edu.cn
Received December 9, 2008
ABSTRACT
Two donor-acceptor hybrid star-shaped D-π-A molecules were facilely developed. The absorption spectra of TrTD2A and TrT2DA, which
almost covered the whole visible range, were tuned by changing the ratio of donor and acceptor groups. However, the PL quantum effieciencies
of TrTD2A and TrT2DA in solutions were dramatically reduced after the introduction of benzothiadiazole unit as acceptor chromophore.
π-Conjugated small molecules have attracted considerable
attention as active materials in solution-processable solar cells
due to their high purity and reproducible properties.1 To
improve the power conversion efficiencies of solar cells, it
is of critical importance to develop new organic small
(2) (a) Tang, C. W. Appl. Phys. Lett. 1986, 48, 183–185. (b) Yu, G.;
Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789–
1791. (c) Eckert, J. F.; Nicoud, J. F.; Nierengarten, J.-F.; Liu, S. G.;
Echegoyen, L.; Barigelletti, F.; Armaroli, N.; Ouali, L.; Krasnikov, V. V.;
Hadziioannou, G. J. Am. Chem. Soc. 2000, 122, 7467–7479. (d) Coakley,
K. M.; McGehee, M. D. Chem. Mater. 2004, 16, 4533–4542. (e) Negishi,
N.; Takimiya, K.; Otsubo, T.; Hutaka, Y.; Aso, Y. Chem. Lett. 2004, 654–
655. (f) Shi, C.; Yao, Y.; Yang, Y.; Pei, Q. J. Am. Chem. Soc. 2006, 128,
8980–8986. (g) Gadisa, A.; Mammo, W.; Andersson, L. M.; Admassie, S.;
Zhang, F.; Andersson, M. R.; Ingana¨s, O. AdV. Funct. Mater. 2007, 17,
3836–3842. (h) Gu¨nes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. ReV.
2007, 107, 1324–1338. (i) Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.;
Nguyen, T.-Q.; Dante, M.; Heeger, A. J. Science 2007, 317, 222–225. (j)
Dennler, G.; Scharber, M. C.; Ameri, T.; Denk, P.; Forberich, K.; Waldauf,
C.; Brabec, C. J. AdV. Mater. 2008, 20, 579–583. (k) Blouin, N.; Michaud,
A.; Gendron, D.; Wakim, S.; Blair, E.; Neagu-Plesu, R.; Belleteˆte, M.;
Durocher, G.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2008, 130, 732–
742. (l) Ferna´ndez, G.; Sa´nchez, L.; Veldman, D.; Wienk, M. M.; Atienza,
C.; Guldi, D. M.; Janssen, R. A. J.; Martı´n, N. J. Org. Chem. 2008, 73,
3189–3196.
(1) (a) Schmidt-Mende, L.; Fechtenkotter, A.; Mu¨llen, K.; Moons, E.;
Friend, R. H.; Mackenzie, J. D. Science 2001, 293, 1119–1122. (b) Cravino,
A.; Leriche, P.; Ale´veˆque, O.; Roquet, S.; Roncali, J. AdV. Mater. 2006,
18, 3033–3037. (c) Hagemann, O.; Jørgensen, M.; Krebs, F. C. J. Org.
Chem. 2006, 71, 5546–5559. (d) Koumura, N.; Wang, Z.-S.; Mori, S.;
Miyashita, M.; Suzuki, E.; Hara, K. J. Am. Chem. Soc. 2006, 128, 14256–
14257. (e) Sun, X. B.; Zhou, Y. H.; Wu, W. C.; Liu, Y. Q.; Tian, W. J.;
Yu, G.; Qiu, W. F.; Chen, S. Y.; Zhu, D. B. J. Phys. Chem. B 2006, 110,
7702–7707. (f) He, C.; He, Q.; Yang, X.; Wu, G.; Yang, C.; Bai, F.; Shuai,
Z.; Wang, L.; Li, Y. J. Phys Chem. C 2007, 111, 8661–8666. (g) Lloyd,
M. T.; Mayer, A. C.; Subramanian, S.; Mourney, D. A.; Herman, D. J.;
Bapat, A.; Anthony, J. E.; Malliaras, G. G. J. Am. Chem. Soc. 2007, 129,
9144–9149. (h) Sun, M.; Wang, L.; Zhu, X.; Du, B.; Liu, R.; Yang, W.;
Cao, Y. Solar Energy Mater. Solar Cells 2007, 91, 1681–1687. (i) Ma,
C.-Q.; Mena-Osteritz, E.; Debaerdemaeker, T.; Wienk, M. M.; Janssen,
R. A. J.; Ba¨uerle, P. Angew. Chem., Int. Ed. 2007, 46, 1679–1683. (j)
Tamayo, A. B.; Walker, B.; Nguyen, T.-Q. J. Phys. Chem. C 2008, 112,
11545–11551. (k) Thompson, B. C.; Fre´chet, J. M. J. Angew. Chem., Int.
Ed. 2008, 47, 58–77.
10.1021/ol802845w CCC: $40.75
Published on Web 01/22/2009
2009 American Chemical Society