Journal of the American Chemical Society
Page 4 of 6
found that the ee remained the same regardless of whether
whether the substrate is cis or trans. Several synthetic
1
2
3
4
5
6
7
8
the substrate is cis or cis/trans mixture, which makes the
method to be very convenient without the tedious isolation
of the cis/trans mixture (Scheme 4a). The interrupted asym-
metric HAM reaction was also conducted on gram scale with
lower catalyst loading (Scheme 4b). Satisfyingly, we found
that the hemiacetal 5 was very stable and was isolated in high
yield and excellent regio- and enantioselectivity albeit with
low dr ratio. The hemiacetal 5 was subsequently treated with
indole or allyltrimethylsilane in the presence of BF3·Et2O. It
was found that the desired products 6 and 7 were obtained in
high yields without losing any ee (Scheme 4c). Importantly,
very high d.r. value was observed when 2a was treated with
indole. Moreover, the chiral pyrrolidine 4a was deprotected
efficiently in high yield without losing any ee (Scheme 4d).
transformations were conducted, demonstrating the high
synthetic utility of the current reaction. A creative route for
the synthesis of Venakalant and Enablex was also developed.
ASSOCIATED CONTENT
Supporting Information
Experimental procedures and compound characterization
data. This material is available free of charge via the Internet
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
AUTHOR INFORMATION
Corresponding Author
ACKNOWLEDGMENT
We thank the grant from Wuhan University (203273463,
203410100064), and “111” Project of the Ministry of Education
of China for financial support and the National Natural Sci-
ence Foundation of China (Grant No. 21372179, 21402145,
21432007, 21502145). We also thank Prof. Wenjun Tang at
Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences for the kind suggestions.
REFERENCES
(1) Reppe W, Vetter H. Liebigs Ann Chem, 1953, 582, 133-161.
(2) (a) Blunt, J. W.; Copp, B. R.; Munro, M. H. G.; Northcote, P. T.;
Prinsep, M. R. Nat. Prod. Rep. 2009, 26, 170−237; (b) Blunt, J. W.;
Copp, B. R.; Keyzers, R. A.; Munro, M. H. G.; Prinsep, M. R. Nat. Prod.
Rep. 2012, 29, 144−122.
(3) (a) Eilbracht, P.; Barfacker, L.; Buss, C.; Hollmann, C.; Kitsos-
Rzychon, B. E.; Kranemann, C. L.; Rische, T.; Roggenbuck, R.;
Schmidt, A. Chem. Rev. 1999, 99, 3329−3365. (b) Eilbracht, P.,
Schmidt, A. M. In Transition Metals for Organic Synthesis, 2nd ed.;
Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, Germany, 2004;
Vol. 1, pp 57−85. (c) Eilbracht, P.; Schmidt, A. M. Top. Organomet.
Chem. 2006, 18, 65−95. (d) Crozet, D.; Urrutigoïty, M.; Kalck, P.
ChemCatChem 2011, 3, 1102−1118.
(4) (a) Crozet D.; Kefalidis C E.; Urrutigoïty M.; Maron L.; Kalck P.;
ACS Catal, 2014, 4, 435; (b) Noonan G M.; Newton D.; Cobley C J.;
Suárez A.; Pizzano A.; Clarke M L. Adv Synth Catal, 2010, 352, 1047-
1054.
(5) (a) Li, S.; Huang, K.; Zhang, J.; Wu, W.; Zhang, X. Org. Lett. 2013,
15, 1036-1039; (b) Liu, G.; Huang, K.; Cai, C.; Cao, B.; Chang, M.; Wu,
W.; Zhang, X. Chem. - Eur. J. 2011, 17, 14559-14563; (c) Liu, G.; Huang,
K.; Cao, B.; Chang, M.; Li, S.; Yu, S.; Zhou, L.; Wu, W.; Zhang, X. Org.
Lett. 2012, 14, 102-105; (d) Li, S.; Huang, K.; Zhang, J.; Wu, W.; Zhang,
X. Org. Lett. 2013, 15, 3078-3081; (e) Zheng, X.; Cao, B.; Zhang, X.
Tetrahedron Lett. 2014, 55, 4489-4491.
(6) Boal, B. W.; Schammel, A. W.; Garg, N. K. Org Lett 2009, 11, 3458-
3461.
(7) Yan, Y.; Zhang, X. J. Am. Chem. Soc., 2006, 128, 7198–7202.
(8) Xu, K.; Zheng, X.; Wang, Z.; Zhang, X. Chem. - Eur. J. 2014, 20,
4357-4352.
(9) Boyd, D. R.; Sharma, N. D.; Dalton, H.; Clarke, D. A. Chem.
Commun. 1996, 45-46.
(10) Peter, E.; Alexander, R. M. U.S. Patent 005096890A, 1992.
(11) Baldwin, C. M.; Lyseng-Williamson, K. A.; Keam, S. J. Drugs,
2008, 68, 803-838.
Scheme 4. Synthetic transformation.
Furthermore, a creative synthetic route for Vernakalant
and Enablex was developed. Starting from 2l, the one-pot
interrupted HAM reaction proceeded smoothly to give 4q in
very high yield and excellent ee (Scheme 5). Deprotection of
the acetoxy group gave 9 in high yield without losing any ee.
Starting from 9, Vernakalant17 and Enablex10 can be
synthesized readily following literature procedures.
(12) Kumar, U. S.; Sankar, V. R.; Rao, M. M.; Jaganathan, T. S.; Buchi
Reddy, R. Org. Process. Res. Dev. 2012, 16, 1917-1920.
(13) Stadler, M., Bitzer, J., Mayer-Bartschmid, A., Mu ¨ller, H., Benet-
Buchholz, J. Gantner, F., Tichy, H., Reinemer, P., BaconO, K. J. Nat.
Prod. 2007, 70, 246-252.
(14) Franke, R.; Selent, D.; Borner, A. Chem. Rev. 2012, 112, 5675-5732.
(15) For representative examples: (a) Sakai, N.; Nozaki, K.; Takaya, H.
J. Chem. Soc., Chem. Commun. 1994, 4, 395−396. (b) McDonald, R. I.;
Wong, G. W.; Neupane, R. P.; Stahl, S. S.; Landis, C. R. J. Am. Chem.
Scheme 5. Creative synthesis of Vernakalant and Enablex.
In summary, the first interrupted asymmetric HAM
reaction was developed. The challenging trans-1,2-
disubstituted olefins were employed as substrates and a
series of valuable chiral pyrrolidinones and pyrrolidines were
obtained in high yields, high regioslectivities and excellent ee.
It was found that the ee remained the same regardless of
ACS Paragon Plus Environment