Herein, we describe our findings on the investigation of
benzyne with N-substituted imidazoles. The reaction was
assumed to proceed via a tandem Diels-Alder reaction of
benzyne with N-substituted imidazole and intermolecular
nucleophilic coupling reaction. The ratio of benzyne and
imidazole was crucial for the direction of the reaction, and
two important building blocks, aryl amine and anthracene,
were constructed in a single step under optimized conditions.
The aryl amines containing anthracene14 were separated as
the final products. This method provides a novel transition-
metal-free access to aryl amines containing anthracene under
very mild conditions.
We first examined the reaction of benzyne and N-
methylimidazole using the same reaction conditions reported
by Yoshida et al.,13 and N-methyl-N′-phenyl imidazolium
triflate was obtained. We noticed that in their experiments
the ratio of N-substituted imidazole and benzyne was 3:1.
We reasoned that the large excess of imidazole might make
the rate of nucleophilic addition of a nitrogen atom to
benzyne fast and lead to the production of imidazolium salt.
Accordingly, we carried out the reaction using benzyne and
imidazole in a 1:1 ratio at room temperature. As we expected,
the benzyne/imidazole ratio had a decisive influence on the
direction of the reaction, and the interesting tandem product
N-methyl-N′-phenylanthracen-10-amine (1c) was isolated in
23% yield after 24 h. The increase of the reaction temperature
was found to be beneficial to the tandem reaction, and the
best yield was obtained when the reaction temperature
achieved 50 °C for 12 h (Table 1, entries 1-3 and 6). Further
(7) (a) Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. J. Am. Chem. Soc.
1998, 120, 12459-12467. (b) Goodbrand, H. B.; Hu, N. X. J. Org. Chem.
1999, 64, 670-674. (c) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald,
S. L. J. Am. Chem. Soc. 2001, 123, 7727-7729. (d) Wolter, M.; Klapars,
A.; Buchwald, S. L. Org. Lett. 2001, 3, 3803-3805. (e) Gujadhur, R. K.;
Bates, C. G.; Venkataraman, D. Org. Lett. 2001, 3, 4315-4317. (f) Ma,
D.; Xia, C. Org. Lett. 2001, 3, 2583-2586. (g) Klapars, A.; Huang, X.;
Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421-7428. (h) Antila, A.
A.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 11684-
11688. (i) Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Org. Lett. 2002, 4,
581-584. (j) Job, G. E.; Buchwald, S. L. Org. Lett. 2002, 4, 3703-3706.
(k) Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2003, 5, 793-796. (l) Ma,
D.; Xia, C.; Jiang, J.; Zhang, J.; Tang, W. J. Org. Chem. 2003, 68, 442-
451. (m) Evindar, G.; Batey, R. A. Org. Lett. 2003, 5, 133-136. (n)
Enguehard, C.; Allouchi, H.; Gueiffier, A.; Buchwald, S. L. J. Org. Chem.
2003, 68, 4367-4370. (o) Padwa, A.; Crawford, K. R.; Rashatasakhon, P.;
Rose, M. J. Org. Chem. 2003, 68, 2609-2617. (p) Mallesham, B.; Rajeshi,
B. M.; Rajmohan-Reddy, P.; Srinivas, D.; Trehan, S. Org. Lett. 2003, 5,
963-965. (q) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am.
Chem. Soc. 2005, 127, 4120.
Table 1. Optimization Studiesa
(8) (a) Louie, J.; Driver, M. S.; Hamann, B. C.; Hartwig, J. F. J. Org.
Chem. 1997, 62, 1268-1273. (b) Wolfe, J. P.; Buchwald, S. L. J. Org.
Chem. 1997, 62, 1264-1267. (c) Herman, B. C.; Hartwig, J. F. J. Am.
Chem. Soc. 1998, 120, 7369-7370. (d) Kamikawa, K.; Sugimoto, S.;
Uemura, M. J. Org. Chem. 1998, 63, 8407-8410. (e) Hartwig, J.;
Kawatsura, M.; Hauck, S. I.; Shaughnessy, K. H.; Alcazar-Roman, L. M.
J. Org. Chem. 1999, 64, 5575-5580. (f) Staupher, S. R.; Lee, S.; Stambuli,
J. P.; Hauck, S. I.; Hartwig, J. F. Org. Lett. 2000, 2, 1423-1426. (g) Huang,
X. H.; Buchwald, S. L. Org. Lett. 2001, 3, 3417-3419. (h) Ali, M. H.;
Buchwald, S. L. J. Org. Chem. 2001, 66, 2560-2565. (i) Vicui, M. S.;
Kissling, R. M.; Stevens, E. D.; Nolan, S. P. Org. Lett. 2002, 4, 2229-
2231.
(9) (a) Heaney, H. Chem. ReV. 1962, 62, 81-97. (b) Kessar, S. V. Acc.
Chem. Res. 1978, 11, 283-288. (c) Bryce, M. R.; Vernon, J. M. AdVances
in Heterocyclic Chemistry; Katritsky, A. R., Boulton, A. J., Eds.; Aca-
demic: New York, 1981; Vol. 28, pp 183-229. (d) Buchwald, S. L.;
Nielsen, R. B. Chem. ReV. 1988, 88, 1047-1058. (e) Snieckus, V. Chem.
ReV. 1990, 90, 879-933. (f) Majoral, J. P.; Igau1, A.; Cadierno, V.;
Zablocka, M. Top. Curr. Chem. 2002, 220, 54-76. (g) Pellissier, H.;
Santelli, M. Tetrahedron 2003, 59, 701-730. (h) Jia, G. C. Acc. Chem.
Res. 2004, 37, 479-486. (i) Guitian, E.; Perez, D.; Pena, D. Top
Oraganomet. Chem. 2005, 14, 109-146.
entry
conditions
yieldb (%)
1
2
3
4
5
6
7
8
9
30 °C, 24 h, CH3CN
50 °C, 24 h, CH3CN
50 °C, 12 h, CH3CN
50 °C, 8 h, CH3CN
50 °C, 4 h, CH3CN
80 °C, 24 h, CH3CN
80 °C, 24 h, toluene
110 °C, 24 h, toluene
80 °C, 24 h, DME
67 °C, 24 h, THF
26
53
56
38
19
43
36
42
36
28
10
a
Reaction conditions: 1a (0.5 mmol), 1b (0.5 mmol), CsF (1.0 mmol).
Isolated yield.
b
(10) (a) Jamart-Gregoire, B.; Leger, C.; Caubere, P. Tetrahedron Lett.
1990, 31, 7599-7602. (b) Khanapure, S. P.; Biehl, E. R. J. Org. Chem.
1990, 55, 1471-1475. (c) Bhawal, B. M.; Khanapure, S. P.; Zhang, H.;
Biehl, E. R. J. Org. Chem. 1991, 56, 2846-2849. (d) Zouaoui, M. A.;
Mouaddib, A.; Jamart-Gregoire, B.; Ianelli, S.; Nardelli, M.; Caubere, P.
J. Org. Chem. 1991, 56, 4078-4081. (e) Deshmukh, A. R.; Zhang, H.;
Tran, L.; Biehl, E. R. J. Org. Chem. 1992, 57, 2485-2486. (f) Dutt, M.;
Fravel, B.; Ford, G. P.; Biehl, E. R. J. Org. Chem. 1994, 59, 497-499. (g)
Shair, M. D.; Yoon, T. Y.; Mosny, K. K.; Chou, T. C.; Danishefsky, S. J.
J. Am. Chem. Soc. 1996, 118, 9509-9525. (h) Kita, Y.; Higuchi, K.;
Yoshida, Y.; Iio, K.; Kitagaki, S.; Ueda, K.; Akai, S.; Fujioka, H. J. Am.
Chem. Soc. 2001, 123, 3214-3222. (i) Liu, Z. J.; Larock, R. C. Org. Lett.
2003, 5, 4673-4675. (j) Liu, Z. J.; Larock, R. C. Org. Lett. 2004, 6, 99-
102. (k) Tambar, U. K.; Stoltz, B. M. J. Am. Chem. Soc. 2005, 127, 5340-
5341.
(11) (a) Pena, D.; Escudero, S.; Perez, D.; Guitian, E.; Castedo, L. Angew.
Chem., Int. Ed. 1998, 37, 2659-2661. (b) Radhakrishnan, K. V.; Yoshikawa,
E.; Yamamoto, Y. Tetrahedron Lett. 1999, 40, 7533-7535. (c) Pena, D.;
Perez, D.; Guitian, E.; Castedo, L. J. Am. Chem. Soc. 1999, 121, 5827-
5828. (d) Yoshikawa, E.; Yamamoto, Y. Angew. Chem., Int. Ed. 2000, 39,
173-175. (e) Yoshikawa, E.; Radhakrishnan, K. V.; Yamamoto, Y. J. Am.
Chem. Soc. 2000, 122, 7280-7586. (f) Yoshida, H.; Honda, Y.; Shirakawa,
E.; Hiyama, T. Chem. Commun. 2001, 1880-1881. (g) Jeganmohan, M.;
Cheng, C.-H. Org. Lett. 2004, 6, 2821-2824. (h) Dong, C. G.; Hu, Q. S.
Org. Lett. 2006, 8, 5057-5060.
increase of the temperature resulted in a lower yield (Table
1, entry 6). Among the solvents tested, CH3CN was found
to be the best (Table 1, entries 2 and 7-10).
(12) (a) Carre, M. C.; Gregoire, B.; Caubere, P. J. Org. Chem. 1984,
49, 2050-2052. (b) Matsumoto, T.; Hosoya, T.; Suzuki, K. J. Am. Chem.
Soc. 1992, 114, 3568-3570. (c) Gingrich, H. L.; Huang, Q.; Morales, A.
L.; Jones, M., Jr. J. Org. Chem. 1992, 57, 3803-3806. (d) Tobe, Y.; Ishii,
H.; Saiki, S.; Kakiuchi, K.; Naemura, K. J. Am. Chem. Soc. 1993, 115,
11604-11605. (e) Hosoya, T.; Takashiro, E.; Matsumoto, T.; Suzuki, K.
J. Am. Chem. Soc. 1994, 116, 1004-1015. (f) Escudero, S.; Pe´rez, D.;
Guitia´n, E.; Castedo, L. J. Org. Chem. 1997, 62, 3028-3029. (g) Kelly, T.
R.; Tellitu, I.; Sestelo, J. P. Angew. Chem., Int. Ed. Engl. 1997, 36, 1866-
1868. (h) Kitamura, T.; Fukatsu, N.; Fujiwara, Y. J. Org. Chem. 1998, 63,
8579-8581. (i) Kelly, T. R.; Sestelo, J. P.; Tellitu, I. J. Org. Chem. 1998,
63, 3655-3665. (j) Michellys, P. Y.; Maurin, P.; Toupet, L.; Pellissier, H.;
Santelli, M. J. Org. Chem. 2001, 66, 115-122. (k) Caster, K. C.; Keck, C.
G.; Walls, R. D. J. Org. Chem. 2001, 66, 2932-2936. (l) Maurin, P.;
Ibrahim-Ouali, M.; Santelli, M. Eur. J. Org. Chem. 2002, 151-156.
(13) Yoshida, H.; Sugiura, S.; Kunai, A. Org. Lett. 2002, 4, 2767-2769.
(14) (a) Enokida, T.; Tamano, M.; Okutsu, S. European Patent 0 765
106 A2, 1997. (b) Yu, M. X.; Duan, J. P.; Lin, C. H.; Cheng, C. H.; Tao,
Y. T. Chem. Mater. 2002, 14, 3958-3963.
782
Org. Lett., Vol. 9, No. 5, 2007