2410 J ournal of Medicinal Chemistry, 2001, Vol. 44, No. 15
Barlocco et al.
(8) Forray, C.; Bard, J . A.; Laz, T. M.; Smith, K. E.; Vaysse, P. J .;
Weinshank, R. L.; Gluchowski, C.; Branchek, T. A. Faseb J .
1994, 8, A353.
(9) Hieble, J . P.; Bylund, D. B.; Clarke, A. E.; Eikenberg, D. C.;
Langer, S. Z.; Lefkowitz, R. J .; Minneman, K. P.; Ruffolo, R. R.
International Union of Pharmacology X. Recommendation for
nomenclature of R1-adrenoceptors: Consensus update. Pharma-
col. Rev. 1995, 47, 267-270.
(10) Montorsi, M.; Menziani, M. C.; Cocchi, M.; Fanelli, F.; De
Benedetti, P. G. Computer Modeling of Size and Shape Descrip-
tors of R1-Adrenergic Receptor Antagonists and Quantitative
Structure-Affinity/Selectivity Relationships. Methods Companion
Methods Enzymol. 1998, 14, 239-254.
(11) Dal Piaz, V.; Ciciani, G.; Turco, G. Oxidative cleavage of 7-oxo-
6,7-dihydroisoxazolo[3,4-d]pyridazines by ceric(IV) ammonium
nitrate: a synthetic approach to new 5-acyl-4-nitro-3-oxo-2,3-
dihydropyridazines. Synthesis 1989, 213-214.
(12) Dal Piaz, V.; Ciciani, G.; Giovannoni, M. P.; Franconi, F.
Synthesis and evaluation as platelet aggregation inhibitors of
6-phenyl-2,4-substituted-3(2H)-pyridazinones and their rigid
analogues benzo[h]cinnolin-3,5-diones. Drug Des. Dis. 1996, 14,
53-75.
(13) Nitta, Y.; Yoneda, F.; Ohtaka, T.; Kato, T. Pyridazin-derivate.
V. Synthese der derivate des 6-phenyl-3(2H]pyridazinons. Chem.
Pharm. Bull. 1964, 12, 69-73.
binding (Emax) achieved for each drug and the concentration
required to obtain 50% of Emax (pEC50 value) were evaluated.
Molecu la r Mod elin g. The protonated structures of the
ligands considered in this study were fully optimized by means
of semiempirical molecular orbital calculations (AM1),27 using
the MOPAC 6.0 (QCPE 455) program.
The ad hoc modeling consisted of comparing the vdw volume
of the minimized structure of each ligand (in its extended
conformation) with the vdw volume of a supermolecule chosen
as a template. Three different supermolecules were modeled
for the three R1-AR subtypes. In the series of structurally
heterogeneous ligands considered in a previous study,10 subsets
of analogues can be identified. For each subset, the ligand
showing the highest affinity for the specific R1-AR subtype was
chosen as a component of the respective reference supermol-
ecule. Thus, the ligands used for the R1a supermolecule are
compounds 1-6, the ligands for the R1b supermolecule are
compounds 7-10, and the ligands for the R1d supermolecule
are 7, 8, 10-12 (Chart 1). The ligands chosen as components
of each supermolecule were superimposed by a topologic rigid
body fit procedure based on the following pharmacophoric
criteria: (a) the hydrogen of the protonated nitrogen atom and
(b) the aromatic rings closest to and farthest from the proto-
nated nitrogen. All the other compounds were rigidly super-
imposed on the appropriate supermolecule with each ligand
being superimposed on the analogue compound present in the
supermolecule or on its structurally closest compound. Match-
ing involved the moieties carrying the protonated nitrogen,
i.e., the piperazinic ring.
QUANTA molecular modeling package (release 96; Molec-
ular Simulation Inc., 200 Fifth Avenue, Waltham, MA 02154)
was used for molecular comparison and computation of the
vdw volumes. We considered the following size and shape
descriptors: Vin and Vout, which are, respectively, the intersec-
tion and the outer van der Waals volume of the ligand
considered with respect to the vdw volume of the reference
supermolecule; and Vdif, which is computed according to the
formula Vdif ) (Vin-Vout)/Vsup, where Vsup is the molecular
volume of the reference supermolecule.
(14) Schonbeck, R.; Kloimstein, E. Uber Pyridazine mit kerngebun-
denem. Chlor. Monatsh. Chem. 1968, 99, 15-48.
(15) Montesano, F.; Barlocco, D.; Dal Piaz, V.; Leonardi, A.; Poggesi,
E.; Fanelli, F.; De Benedetti, P. G. Isoxazolo-[3,4-d]-pyridazin-
7-(6H)-ones and their corresponding 4,5-disubstituted-3-(2H)
pyridazinone analogues as new substrates for R1-adrenoceptor
selective antagonists: synthesis, modeling and binding studies.
Bioorg Med. Chem. 1998, 6, 925-935.
(16) Cavalli, A.; Fanelli, F.; Taddei, C.; De Benedetti, P. G.; Cotecchia,
S. Amino acids of the R1B-adrenergic receptor involved in agonist
binding: further differences in docking catecholamines to recep-
tor subtypes. FEBS Lett. 1996, 399, 9-13.
(17) De Benedetti, P. G.; Fanelli, F.; Menziani, M.; Cocchi, M.; Testa,
R.; Leonardi, A. R1-Adrenoceptor Subtype Selectivity: Molecular
Modelling and Theoretical Quantitative Structure-Affinity Re-
lationships. Bioorg. Med. Chem. 1997, 5, 809-816.
(18) De Benedetti, P. G.; Fanelli, F.; Menziani, M. C.; Cocchi, M. The
ad hoc supermolecule approach to receptor ligand design. J . Mol.
Struct. (THEOCHEM) 2000, 503, 1-16, and references therein.
(19) Testa, R.; Taddei, C.; Poggesi, E.; Destefani, C.; Cotecchia, S.;
Hieble, J . P.; Sulpizio, A. C.; Naselsky, D.; Bergsma, D.; Ellis,
S.; Swift, A.; Ganguly, S.; Ruffolo, R. R.; Leonardi, A. Rec 15/
2739 (SB 216469): A novel prostate selective R1-adrenoceptor
antagonist. Pharmacol. Commun. 1995, 6, 79.
Ack n ow led gm en t. Financial support from CNR
and technical support from CICAIA (University of
Modena) are acknowledged.
Refer en ces
(20) Fargin, A.; Raymond, J . R.; Regan, J . W.; Cotecchia, S.; Lefkow-
itz, R. J .; Caron, M. G. Effector coupling mechanisms of the
cloned 5HT1A receptor. J . Biol. Chem. 1989, 284, 14848-14852.
(21) Fargin, A.; Raymond, J . R.; Lohse, M. J .; Kobilka, B. K.; Caron,
M. G.; Lefkowitz, R. J . The genomic clone G-21 which resembles
a â-adrenergic receptor sequence encodes the 5HT1A receptor.
Nature 1988, 335, 358-360.
(22) De Lean, A.; Munson, P. J .; Rodbard, D. Simultaneous Analysis
of Families of Sigmoidal Curves: Application to Bioassay,
Radioligand Assay, and Physiological Dose-Response Curves.
Am. J . Physiol. 1978, 235, E97-E102.
(23) Cheng, Y. C.; Prusoff, W. H. Relationship Between the Inhibition
Constant (Ki) and the Concentration of Inhibitor which Causes
50 Percent Inhibition (IC50) of an Enzyme Reaction. Biochem.
Pharmacol. 1973, 22, 3099-3108.
(24) Testa, R.; Guarneri, L.; Poggesi, E.; Simonazzi, I.; Taddei C.;
Leonardi, A. Mediation of noradrenaline-induced contractions
of rat aorta by the R1B-adrenoceptor subtype. Br. J . Pharmacol.
1995, 14, 745-750.
(25) Tallarida, R. J .; Murray, R. B. Manual of Pharmacologic
Calculations with Computer Programs, 2nd ed.; Springer-
Verlag: Berlin, 1987.
(26) Stanton, J . A.; Beer, M. S. Characterization of a cloned human
5-HT1A receptors cell line using [35S]GTPγ binding. Eur. J .
Pharmacol. 1997, 320, 267-275.
(27) Dewar, M. J . S.; Zoebisch, E. G.; Healey, E. F.; Stewart, J . J . P.
AM1: a new general purpose quantum mecanical molecular
model. J . Am. Chem. Soc. 1985, 107, 3902-3909.
(1) Cotecchia, S.; Schwinn, D. A.; Randall, L. L.; Lefkowitz, R. J .;
Caron, M. G.; Kobilka, B. K. Molecular cloning and expression
of the cDNA for the hamster R1-adrenergic receptor. Proc. Natl.
Acad. Sci. U.S.A. 1988, 85, 7159-7163.
(2) Schwinn, D. A.; Lomasney, J . W.; Lorenz, W.; Szklut, P. J .;
Fremeau, R. T.; Yang-Feng, T. L.; Caron, M. G.; Lefkowitz, R.
J .; Cotecchia, S. Molecular cloning and expression of the cDNA
for a novel R1-adrenergic receptor subtype. J . Biol. Chem. 1990,
265, 8183-8189.
(3) Lomasney, J . W.; Cotecchia, S.; Lorenz, S.; Leung, W.; Schwinn,
D. A.; Yang-Feng, T. L.; Brownstein, M.; Lefkowitz, R. J .; Caron,
M. G. Molecular cloning and expression of the cDNA for the R1A
-
adrenergic receptor. J . Biol. Chem. 1991, 266, 6365-6369.
(4) Perez, D. M.; Piascik, M. T.; Graham, R. M. Solution-phase
library screening for the identification of rare clones: isolation
of an R1D-adrenergic receptor cDNA. Mol. Pharmacol. 1991, 40,
876-883.
(5) Schwinn, D. A.; Lomasney, J . W. Pharmacologic characterization
of cloned R1-adrenoceptor subtypes: selective antagonists sug-
gest the existence of a fourth subtype. Eur. J . Pharmacol. 1992,
227, 433-436.
(6) Laz, T. M.; Forray, C.; Smith, K. E.; Bard, J . A.; Vaysse, P. J .
J .; Branchek, T. A.; Weinshank, R. L. The rat homologue of the
bovine R1c-adrenergic receptor shows the pharmacological prop-
erties of the classical R1A subtype. Mol. Pharmacol. 1994, 46,
414-422.
(7) Forray, C.; Bard, J . A.; Wetzel, J . M.; Chiu, G.; Shapiro, E.; Tang,
R.; Lepor, H.; Hartig P. R.; Weinshank, R. L.; Branchek, T. A.;
Gluchowski, C. The R1a adrenergic receptor that mediates
smooth muscle contraction in human prostate has the pharma-
cological properties of the cloned human R1c subtype. Mol.
Pharmacol. 1994, 45, 703-708.
J M0009336