Organic Letters
Letter
Wang, J.; Pan, C.-M.; Gianatassio, R.; Schmidt, M. A.; Eastgate, M. D.;
Baran, P. S. J. Am. Chem. Soc. 2016, 138, 2174.
(20) The Bipy−Ni(Cl)−C(O)OEt complex resulting from the
reaction of Bipy−Ni(COD) with ethyl chloroformate was found to
be thermally stable in the solid state. See: Seidel, W.; Raupach, L. Z. Z.
Chem. 1988, 28, 414.
the manuscript, and Mr. Qingchen Zhang (Shanghai
University) for preparation of the substrates.
REFERENCES
■
(1) (a) Sun, H. Bioorg. Med. Chem. Lett. 2012, 22, 989. (b) Beller, H.
R.; Lee, T. S.; Katz, L. Nat. Prod. Rep. 2015, 32, 1508. (c) Kamaly, N.;
Yameen, B.; Wu, J.; Farokhzad, O. C. Chem. Rev. 2016, 116, 2602.
(2) (a) Yus, M.; Najera, C.; Chinchilla, R. Sci. Synth. 2006, 20b, 777.
(b) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Rev. 2013, 113, 1.
(3) RMgBr−CuBr−2LiBr: Bottalico, D.; Fiandanese, V.; Marchese,
G.; Punzi, A. Synlett 2007, 2007, 974.
(21) Preparation of complex II-a was attempted following the
procedure in ref 20. However, the isolated ochre solid turned green
after overnight storage in a glovebox at rt. IR spectroscopy supported
1
its decomposition. The H NMR spectrum of the isolated solid in
DMF-d7 (even at −20 °C) was composed of characteristic peaks for
iPr-OH and paramagnetic peaks identical to those of (5a)NiCl2,
for details). Likewise, syntheses of II-b and II-c were attempted using
the method in ref 20, but only complex mixtures were obtained in the
DMF solutions.
(22) (a) Breitenfeld, J.; Ruiz, J.; Wodrich, M. D.; Hu, X. J. Am. Chem.
Soc. 2013, 135, 12004. (b) Biswas, S.; Weix, D. J. J. Am. Chem. Soc.
2013, 135, 16192. (c) Schley, N. D.; Fu, G. C. J. Am. Chem. Soc. 2014,
136, 16588.
(4) R−Li: Moriya, K.; Didier, D.; Simon, M.; Hammann, J. M.;
Berionni, G.; Karaghiosoff, K.; Zipse, H.; Mayr, H.; Knochel, P. Angew.
Chem., Int. Ed. 2015, 54, 2754.
(5) Bn−Zn: Metzger, A.; Argyo, C.; Knochel, P. Synthesis 2010, 2010,
882.
(6) R−In: (a) Zhao, Y.; Jin, L.; Li, P.; Lei, A. J. Am. Chem. Soc. 2008,
130, 9429. R−Hg: (b) Baird, W. C., Jr.; Hartgerink, R. L.; Surridge, J.
H. J. Org. Chem. 1985, 50, 4601.
(23) Cyclization of 6-iodo-1-hexene with an increase in the Ni/3a
catalyst loading from 2.5% to 15% resulted in a linear increase in the
ratio of linear to 5-exo-cyclic esters, indicating that a radical escape−
rebound mechanism may be operative (see the Supporting
(7) Sumino, S.; Fusano, A.; Fukuyama, T.; Ryu, I. Acc. Chem. Res.
2014, 47, 1563.
(8) Sargent, B. T.; Alexanian, E. J. J. Am. Chem. Soc. 2016, 138, 7520.
(9) Pt−RI/CO/H2: Takeuchi, R.; Tsuji, Y.; Fujita, M.; Kondo, T.;
Watanabe, Y. J. Org. Chem. 1989, 54, 1831.
(10) For an example of ambient light-mediated Mn2(CO)10-catalzyed
radical cyclization/carbonylation of alkene-pendant alkyl iodides, see:
McMahon, C. M.; Renn, M. S.; Alexanian, E. J. Org. Lett. 2016, 18,
4148.
(11) For additional examples of light-mediated inexpensive-metal-
catalyzed carbonylation of alkyl halides, see: Cu: (a) Wang, H. W.; Jia,
Y. P.; Gao, D. B.; Yin, J. M.; Zhou, G. Y.; Li, S. M. Chin. Chem. Lett.
2007, 18, 795. Co: (b) Cash, D.; Combs, A.; Dragojlovic, V.
Tetrahedron Lett. 2004, 45, 1143. For additional examples using Cu-
catalyzed carbonylative coupling of cycloalkanes, see: (c) Li, Y.; Dong,
K.; Zhu, F.; Wang, Z.; Wu, X.-F. Angew. Chem., Int. Ed. 2016, 55, 7227.
(d) Li, Y.; Zhu, F.; Wang, Z.; Wu, X.-F. ACS Catal. 2016, 6, 5561.
(12) For reviews of reductive coupling of two electrophiles, see:
(24) Exposure of Ni0 to excess alkyl iodide gives alkyl−NiII−I, which
can be stable at low concentration (ref 22a). Also see: Yamamoto, T.;
Kohara, T.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1981, 54, 2010.
(25) Jones, G. D.; Martin, J. L.; McFarland, C.; Allen, O. R.; Hall, R.
E.; Haley, A. D.; Brandon, R. J.; Konovalova, T.; Desrochers, P. J.;
Pulay, P.; Vicic, D. A. J. Am. Chem. Soc. 2006, 128, 13175.
(a) Knappke, C. E. I.; Grupe, S.; Gartner, D.; Corpet, M.; Gosmini, C.;
̈
Jacobi von Wangelin, A. Chem. - Eur. J. 2014, 20, 6828. (b) Everson, D.
A.; Weix, D. J. J. Org. Chem. 2014, 79, 4793. (c) Moragas, T.; Correa,
A.; Martin, R. Chem. - Eur. J. 2014, 20, 8242. (d) Weix, D. J. Acc. Chem.
Res. 2015, 48, 1767. (e) Gu, J.; Wang, X.; Xue, W. C.; Gong, H. G.
Org. Chem. Front. 2015, 2, 1411.
(13) For Ni-catalyzed reductive ketone synthesis, see: (a) Wotal, A.
C.; Weix, D. J. Org. Lett. 2012, 14, 1476. (b) Wotal, A. C.; Ribson, R.
D.; Weix, D. J. Organometallics 2014, 33, 5874. (c) Cherney, A. H.;
Kadunce, N. T.; Reisman, S. E. J. Am. Chem. Soc. 2013, 135, 7442.
(d) Wu, F.; Lu, W.; Qian, Q.; Ren, Q.; Gong, H. Org. Lett. 2012, 14,
3044. (e) Yin, H.; Zhao, C.; You, H.; Lin, Q.; Gong, H. Chem.
Commun. 2012, 48, 7034. (f) Zhao, C.; Jia, X.; Wang, X.; Gong, H. J.
Am. Chem. Soc. 2014, 136, 17645. (g) Jia, X.; Zhang, X.; Qian, Q.;
Gong, H. Chem. Commun. 2015, 51, 10302.
(14) For photoredox/Ni dual catalytic ketone formation, see: (a) Le,
C. C.; MacMillan, D. W. J. Am. Chem. Soc. 2015, 137, 11938. (b) Joe,
C. L.; Doyle, A. G. Angew. Chem., Int. Ed. 2016, 55, 4040. (c) Amani,
J.; Sodagar, E.; Molander, G. A. Org. Lett. 2016, 18, 732.
(15) For CO2 trapping with alkyl halides and allylic acetates, see:
(a) Liu, Y.; Cornella, J.; Martin, R. J. Am. Chem. Soc. 2014, 136, 11212.
(b) Borjesson, M.; Moragas, T.; Martin, R. J. Am. Chem. Soc. 2016,
̈
138, 7504.
(16) Serrano, E.; Martin, R. Angew. Chem., Int. Ed. 2016, 55, 11207.
(18) Huihui, K. M. M.; Caputo, J. A.; Melchor, Z.; Olivares, A. M.;
Spiewak, A. M.; Johnson, K. A.; DiBenedetto, T. A.; Kim, S.;
Ackerman, L. K. G.; Weix, D. J. J. Am. Chem. Soc. 2016, 138, 5016.
(19) (a) Wang, J.; Qin, T.; Chen, T.-G.; Wimmer, L.; Edwards, J. T.;
Cornella, J.; Vokits, B.; Shaw, S. A.; Baran, P. S. Angew. Chem., Int. Ed.
2016, 55, 9676. (b) Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.;
D
Org. Lett. XXXX, XXX, XXX−XXX