10.1002/adsc.202000189
Advanced Synthesis & Catalysis
Education of Guangdong, China (2017KQNCX174), Shenzhen
Special Funds for the Development of Biomedicine, Internet, New
Energy, and New Material Industries (JCYJ20170412152435366,
JCYJ20180302180235837), Research Start-Up Funding of SZU
(8530300000137 and 860000002110230), Shenzhen Nobel Prize
Scientists Laboratory Project (C17783101), SUSTech Special
Fund for the Construction of High-Level Universities
(G02216303).
References
[1] For selected reviews, see: a) S. Patai, Chemistry of
Triple-Bonded Functional Groups, Wiely, New York,
1994; b) P. J. Stang and F. Dieferich, Modern acetylene
chemistry, VCH, Weinheim, Cambridge, 1995; c) G.
Zeni, R. C. Larock, Chem. Rev. 2004, 104, 2285-2310;
d) M. Meldal, C. W. Tornøe, Chem. Rev. 2008, 108,
2952-3015; e) M. C. Willis, Chem. Rev. 2010, 110, 725-
748; f) C.-J. Li, Acc. Chem. Res. 2010, 43, 581-590.
[2] For selected reviews, see: a) K. Sonogashira, in
Handbook of Organopalladium Chemistry for Organic
Synthesis (eds E. Negishi) 493-529 (Wiley-Interscience:
New York, 2002); b) E. Negishi, L. Anastasia, Chem.
Rev. 2003, 103, 1979-2018; c) R. Chinchilla, C. Nájera,
Chem. Rev. 2007, 107, 874-922; d) H. Plenio, Angew.
Chem. Int. Ed. 2008, 47, 6954-6956.
[3] For selected reviews, see: a) K. Sonogashira, J.
Organomet. Chem. 2002, 653, 46-49; b) H. Doucet, J. C.
Hierso, Angew. Chem. Int. Ed. 2007, 46, 834-871; c) R.
Chinchilla, C. Nájera, Chem. Soc. Rev. 2011, 40, 5084-
5121; d) A. Biffis, P. Centomo, A. Del Zotto, M. Zecca,
Chem. Rev. 2018, 118, 2249-2295.
[4] a) M. Eckhardt, G. C. Fu, J. Am. Chem. Soc. 2003, 125,
13642-13643; in this area, Li and co-workers developed
a formal transition metal-free Sonogashira reaction
under ultraviolet-light-irradiation, see: b) W. Liu, L. Li,
C.-J. Li, Nat. Commun. 2015, 6, 6526; c) W. Liu, Z.
Chen, L. Li, H. Wang, C.-J. Li, Chem. Eur. J. 2016, 22,
5888-5893.
Scheme 2. Mechanistic investigation and plausible
mechanism.
In conclusion, we have developed a mild copper-
catalyzed Sonogashira reaction of alkyl halides and
terminal alkynes. Owing to the utilization of a novel
proline-based N,N,P-ligand, the cross coupling
reaction is accomplished under ambient conditions. A
wide range of alkyl halides, such as primary and
secondary (hetero)benzyl chlorides and bromides,
secondary and tertiary -bromo amides and
propargylic bromide were suitable to the strategy, thus
providing diverse alkynes in good efficiency.
Mechanistic study revealed that the reaction might
proceed via a free radical process.
[5] G. Altenhoff, S. Würtz, F. Glorius, Tetrahedron Lett.
2006, 47, 2925-2928.
[6] For one representative review, see: a) R. Shi, Z. Zhang,
X. Hu, Acc. Chem. Res. 2019, 52, 1471-1483; for
selected examples, see: b) O. Vechorkin, D. Barmaz, V.
Proust, X. Hu, J. Am. Chem. Soc. 2009, 131, 12078-
12079; c) P. M. Pérez García, P. Ren, R. Scopelliti, X.
Hu, ACS Catal. 2015, 5, 1164-1171.
Experimental Section
General Procedure for Sonogashira coupling of all
substrates: To a 10-mL Schlenk tube was added CuOAc
(6.0 mg, 0.05 mmol), L9 (23 mg, 0.06 mmol), Cs2CO3 (325
mg, 1.0 mmol), and anhydrous Et2O (2.0 mL). Aryl bromide
1 (0.50 mmol) and alkyne 2 (0.75 mmol) were sequentially
added into the mixture. The reaction mixture was stirred at
room temperature for 20 h. After completion of the reaction,
the precipitate was filtered off and concentrated in vacuo.
The residue was purified by flash column chromatography
on silica gel with petro ether to afford 3.
[7] J. Yi, X. Lu, Y.-Y. Sun, B. Xiao, L. Liu, Angew. Chem.
Int. Ed. 2013, 52, 12409-12413.
[8] For selected reviews covered copper-catalyzed coupling
of other nucleophiles, see: a) C.-J. Li, Acc. Chem. Res.
2009, 42, 335; b) J. Choi, G. C. Fu, Science 2017, 356,
eaaf7230; c) G. C. Fu, ACS Cent. Sci. 2017, 3, 692-700;
for selected examples, see: d) D. H. Burns, J. D. Miller,
H. Chan, M. D. Delaney, J. Am. Chem. Soc. 1997, 119,
2125-2133; e) C.-T. Yang, Z.-Q. Zhang, Y.-C. Liu, L.
Liu, Angew. Chem. Int. Ed. 2011, 50, 3904-3907; f) S. E.
Creutz, K. J. Lotito, G. C. Fu, J. C. Peters, Science 2012,
338, 647-651; g) Y.-Y. Sun, J. Yi, X. Lu, Z.-Q. Zhang,
B. Xiao, Y. Fu, Chem. Commun. 2014, 50, 11060-
11062; h) G.-Z. Wang, J. Jiang, X.-S. Bu, J.-J. Dai, J. Xu,
Y. Fu, H.-J. Xu, Org. Lett. 2015, 17, 3682-3685.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (No. 21722203, 21831002, and 21801116),
Guangdong Provincial Key Laboratory of Catalysis (No.
2020B121201002),
Guangdong
Innovative
Program
(2019BT02Y335), Guangdong Natural Science Foundation
(2018A030310083), Distinguished Young Talents in Higher
4
This article is protected by copyright. All rights reserved.