of 3a-3d to the corresponding aldehydes 4a-4d,14 and
condensation with N-aminooxazolidinone 515 provided chiral
γ-hydrazonoesters 6a-6d. Isolation of small quantities of
aldehydes 4b14a and 4c14c in pure form was best avoided
due to their volatility, and yields of 6b and 6c are reported
over four-step and two-step sequences, respectively, without
purification of intermediates. Specifically, the ester 3b was
obtained from the corresponding N-acyloxazolidinone (a
known Evans allylation product,16 not shown) by successive
treatment with LiOOH and CH2N2, followed by oxidation
and condensation as shown in Scheme 1 to furnish 6b in
43% overall yield for the four steps.
Figure 2. Precursors of tubuvaline and tubuphenylalanine, in which
the C-termini required oxidation (ref 10).
Scheme 1
The study began with series of 4-pentenoate esters 3a-3d
(Scheme 1) which were either commercially available or
were known compounds prepared via modifications of
published methods.12 Lemieux-Johnson oxidation employ-
ing the Jin protocol13 oxidatively cleaved alkene functionality
(3) (a) Dado, G. P.; Gellman, S. H. J. Am. Chem. Soc. 1994, 116, 1054–
1062. (b) Hanessian, S.; Luo, X.; Schaum, R.; Michnick, S. J. Am. Chem.
Soc. 1998, 120, 8569–8570. (c) Seebach, D.; Brenner, M.; Rueping, M.;
Jaun, B. Chem.-Eur. J. 2002, 8, 573–584. (d) Sanjayan, G. J.; Stewart,
A.; Hachisu, S.; Gonzalez, R.; Watterson, M. P.; Fleet, G. W. J. Tetrahedron
Lett. 2003, 44, 5847–5851. (e) Watterson, M. P.; Edwards, A. A.; Leach,
J. A.; Smith, M. D.; Ichihara, O.; Fleet, G. W. J. Tetrahedron Lett. 2003,
44, 5853–5857. (f) Baldauf, C.; Gunther, R.; Hofmann, H.-J. HelV. Chim.
Acta 2003, 86, 2573–2588. (g) Seebach, D.; Schaeffer, L.; Brenner, M.;
Hoyer, D. Angew. Chem., Int. Ed. 2003, 42, 776–778. (h) Farrera-Sinfreu,
J.; Zaccaro, L.; Vidal, D.; Salvatella, X.; Giralt, E.; Pons, M.; Albericio,
F.; Royo, M. J. Am. Chem. Soc. 2004, 126, 6048–6057. (i) Vasudev, P. G.;
Shamala, N.; Ananda, K.; Balaram, P. Angew. Chem., Int. Ed. 2005, 44,
4972–4975. (j) Sharma, G. V. M.; Jayaprakash, P.; Narsimulu, K.; Sankar,
A. R.; Reddy, K. R.; Krishna, P. R.; Kunwar, A. C. Angew. Chem., Int. Ed.
2006, 45, 2944–2947. (k) Vasudev, P. G.; Ananda, K.; Chatterjee, S.;
Aravinda, S.; Shamala, N.; Balaram, P. J. Am. Chem. Soc. 2007, 129, 4039–
4048.
With several γ-hydrazonoesters in hand, prototypical
isopropyl radical additions were examined using the Mn-
mediated photolysis conditions. With InCl3 as the Lewis acid,
coupling of isopropyl iodide and hydrazone 6a (Table 1,
entry 1) afforded a quantitative yield of 7a in very high
diastereomeric purity.
Next, several hydrazones bearing varied substitution at the
R-position of the γ-hydrazonoester were employed for
addition of 2-iodopropane (Table 1, entries 2-4). Smooth
Mn-mediated radical addition occurred with R-methyl, R,R-
dimethyl, and R-benzyloxy-substituted γ-hydrazonoesters, all
providing the isopropyl adducts with consistently high
diastereoselectivities and excellent yields (91-98%). This
small group of substrates 7a-7d offers a brief scan of both
steric and electronic effects, and within this group the
reaction efficiency and selectivity appear to be largely
independent of substitution at the R-position.
(4) (a) Reetz, M. T.; Griebenow, N.; Goddard, R. J. Chem. Soc., Chem.
Commun. 1995, 1605–1606. (b) Hanessian, S.; Schaum, R. Tetrahedron
Lett. 1997, 38, 163–167. (c) Smrcina, M.; Majer, P.; Majerova, E.;
Guerassina, T. A.; Eisenstat, M. A. Tetrahedron 1997, 53, 12867–12874.
(d) Loukas, V.; Noula, C.; Kokotos, G. J. Pept. Sci. 2003, 9, 312–319.
(5) (a) For a recent comprehensive review, see ref.1a (b) Recent
examples: Ramachandran, P. V.; Biswas, D. Org. Lett. 2007, 9, 3025–3027.
(c) Kohler, F.; Gais, H.-J.; Raabe, G. Org. Lett. 2007, 9, 1231–1234. (d)
Cividino, P.; Py, S.; Delair, P.; Greene, A. E. J. Org. Chem. 2007, 72,
485–493.
(6) (a) Sasse, F.; Steinmetz, H.; Heil, J.; Hofle, G.; Reichenbach, H. J.
Antibiot. 2000, 53, 879–885. (b) Hofle, G.; Glaser, N.; Leibold, T.; Karama,
U.; Sasse, F.; Steinmetz, H. Pure Appl. Chem. 2003, 75, 167–178.
(7) Reviews: (a) Friestad, G. K. Tetrahedron 2001, 57, 5461–5496. (b)
Bertrand, M.; Feray, L.; Gastaldi, S. Comp. Rend. Chimie 2002, 5, 623–
638. (c) Miyabe, H.; Ueda, M.; Naito, T. Synlett 2004, 1140–1157.
(8) Review of chiral N-acylhydrazones: Friestad, G. K. Eur. J. Org.
Chem. 2005, 315, 7–3172.
Analysis of the diastereomer ratios recorded in Table 1
called for a standard containing both diastereomers, so the
Mn-mediated addition was attempted in the absence of InCl3.
(9) (a) Friestad, G. K.; Qin, J. J. Am. Chem. Soc. 2001, 123, 9922–
9923. (b) Friestad, G. K.; Qin, J.; Suh, Y.; Marie´, J.-C. J. Org. Chem. 2006,
71, 7016–7027.
(10) Friestad, G. K.; Deveau, A. M.; Marie´, J.-C. Org. Lett. 2004, 6,
3249–3252.
(11) (a) Korapala, C. S.; Qin, J.; Friestad, G. K. Org. Lett. 2007, 9,
4243–4246. (b) Friestad, G. K.; Ji, A. Org. Lett. 2008, 10, 2311–2313.
(12) (a) Formica, M.; Musco, A.; Pontellini, R. J. Mol. Catal. 1993,
84, 239–251. (b) Crimmins, M. T.; Carroll, C. A.; Wells, A. J. Tetrahedron
Lett. 1998, 39, 7005–7008. (c) Kato, Y.; Ohta, H.; Tsuchihashi, G.
Tetrahedron Lett. 1987, 28, 1303–1306.
(14) (a) Agami, C.; Meynier, F.; Rizk, T. Synth. Commun. 1987, 17,
241–250. (b) Agami, C.; Couty, F. Tetrahedron Lett. 1987, 28, 5659–5660.
(c) Adams, A. D.; Schlessinger, R. H.; Tata, J. R.; Venit, J. J. J. Org. Chem.
1986, 51, 3068–3070. (d) Wu, Y.; Li, L.; Sun, Y.-p. Synlett 2004, 125–
127.
(15) Shen, Y.; Friestad, G. K. J. Org. Chem. 2002, 67, 6236–6239.
(16) (a) Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc.
1982, 104, 1737–1739. (b) Williams, D. R.; Cortez, G. S. Tetrahedron Lett.
1998, 39, 2675–2678. (c) See Supporting Information for details.
(13) (a) Yu, W.; Mei, Y.; Kang, Y.; Hua, Z.; Jin, Z. Org. Lett. 2004, 6,
3217–3219. (b) Pappo, R.; Allen, D. S., Jr.; Lemieux, R. U.; Johnson, W. S.
J. Org. Chem. 1956, 21, 478–479.
1096
Org. Lett., Vol. 11, No. 5, 2009