C O M M U N I C A T I O N S
Program of the National Science Foundation under Agreement No.
DMR-0120967. The solid state device work was performed in part
at the Microelectronics Research Center at Georgia Institute of
Technology, a member of the National Nanotechnology Infrastruc-
ture Network, which is supported by NSF (Grant No. ECS- 03-
35765).
Supporting Information Available: Details of experimental results
(electrochemical data, theoretical calculations) and synthetic preparation.
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Wudl, F.; Kobayashi, M.; Heeger, A. J. J. Org. Chem. 1984, 49, 3382–
3384. (b) Bre´das, J. L.; Heeger, A. J.; Wudl, F. J. Chem. Phys. 1986, 85,
4673–4678. (c) Hoogmartens, I.; Adriaensens, P.; Vanderzande, D.; Gelan,
J.; Quattrocchi, C.; Lazzaroni, R.; Bre´das, J. L. Macromolecules 1992, 25,
7347–7356. (d) Kertesz, M.; Choi, C. H.; Yang, S. Chem. ReV. 2005, 105,
3448–3481.
(2) (a) Bre´das, J. L. J. Chem. Phys. 1985, 82, 3808–3811. (b) Havinga, E. E.;
Hoeve, W.; Wynberg, H. Polym. Bull. 1992, 29, 119–126. (c) Roncali, J.
Chem. ReV. 1997, 97, 173–206. (d) van Mullekom, H. A. M.; Vekemans,
J. A. J. M.; Havinga, E. E.; Meijer, E. W. Mater. Sci. Eng.: R 2001, 32,
1–40. (e) Ajayaghosh, A. Chem. Soc. ReV. 2003, 32, 181–191.
(3) (a) Zhu, Z.; Waller, D.; Gaudiana, R.; Morana, M.; Muhlbacher, D.;
Scharber, M.; Brabec, C. Macromolecules 2007, 40, 1981–1986. (b)
Mammo, W.; Admassie, S.; Gadisa, A.; Zhang, F.; Ingana¨s, O.; Andersson,
M. R. Sol. Energy Mater. Sol. Cells 2007, 91, 1010–1018. (c) Colladet,
K.; Fourier, S.; Cleij, T. J.; Lutsen, L.; Gelan, J.; Vanderzande, D.;
HuongNguyen, L.; Neugebauer, H.; Sariciftci, S.; Aguirre, A.; Janssen,
G.; Goovaerts, E. Macromolecules 2007, 40, 65–72. (d) Blouin, N.; Leclerc,
M. Acc. Chem. Res. 2008, 41, 1110–1119. (e) Li, Y.; Zou, Y. AdV. Mater.
2008, 20, 2952–2958. (f) Wienk, M. M.; Turbiez, M.; Gilot, J.; Janssen,
R. A. J. AdV. Mater. 2008, 20, 2556–2560. (g) Huo, L.; Tan, Z. a.; Wang,
X.; Zhou, Y.; Han, M.; Li, Y. J. Polym. Sci., Part A 2008, 46, 4038–4049.
(4) (a) Chen, M. X.; Perzon, E.; Robisson, N.; Jo¨nsson, S. K. M.; Andersson,
M. R.; Fahlman, M.; Berggren, M. Synth. Met. 2004, 146, 233–236. (b)
Kulkarni, A. P.; Kong, X.; Jenekhe, S. A. Macromolecules 2006, 39, 8699–
8711. (c) Kulkarni, A. P.; Zhu, Y.; Babel, A.; Wu, P.-T.; Jenekhe, S. A.
Chem. Mater. 2008, 20, 4212–4223. (d) Yang, Y.; Farley, R. T.; Steckler,
T. T.; Eom, S.-H.; Reynolds, J. R.; Schanze, K. S.; Xue, J. Appl. Phys.
Lett. 2008, 93, 163305. (e) Zaumseil, J.; McNeill, C. R.; Bird, M.; Smith,
D. L.; Ruden, P. P.; Roberts, M.; McKiernan, M. J.; Friend, R. H.;
Sirringhaus, H. J. Appl. Phys. 2008, 103, 064517.
(5) (a) Thompson, B. C.; Kim, Y. G.; McCarley, T. D.; Reynolds, J. R. J. Am.
Chem. Soc. 2006, 128, 12714–12725. (b) Gunbas, G. E.; Durmus, A.;
Toppare, L. AdV. Mater. 2008, 20, 691–695. (c) Beaujuge, P. M.; Ellinger,
S.; Reynolds, J. R. Nat. Mater. 2008, 7, 795–799. (d) Beaujuge, P. M.;
Ellinger, S.; Reynolds, J. R. AdV. Mater. 2008, 20, 2772–2776.
(6) (a) Mas-Torrent, M.; Rovira, C. Chem. Soc. ReV. 2008, 37, 827–838. (b)
Usta, H.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 8580–
8581. (c) Letizia, J. A.; Salata, M. R.; Tribout, C. M.; Facchetti, A.; Ratner,
M. A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 9679–9694. (d) Liu, J.;
Zhang, R.; Sauve´, G.; Kowalewski, T.; McCullough, R. D. J. Am. Chem.
Soc. 2008, 130, 13167–13176. (e) Zhu, Y.; Champion, R. D.; Jenekhe,
S. A. Macromolecules 2006, 39, 8712–8719. (f) Yamamoto, T.; Yasuda,
T.; Sakai, Y.; Aramaki, S. Macromol. Rapid Commun. 2005, 26, 1214–
1217.
Figure 4. (a) Transfer characteristics of samples Q1 and (b) corresponding
output characteristics; p-channel operation (full line in panels a and b) is
measured in a device annealed at 110 °C; n-channel operation (dash line in
panels a and b) is measured in a device annealed at 150 °C.
thick Al source and drain electrodes through a shadow mask. The
channel length and width were L ) 50 µm and W ) 1000 µm,
respectively.
Clear n-and p-channel behavior was observed on the transfer
and output characteristics of devices Q1 and Q2. The electrical
characteristics were measured in three sets of samples with identical
geometry Q1 and Q2. One set was tested immediately after
fabrication. Two other sets were tested after annealing for 30 min
at a temperature of 110 or 150 °C. Figure 4 shows the best transfer
(Figure 4a) and output characteristics (Figure 4b) measured in
samples with geometry Q1. p- and n-Channel electrical character-
istics are shown for a sample Q1 annealed at 110 and 150 °C,
respectively. Field-effect mobility values of 1.2 × 10-3 and 5.8 ×
10-4 cm2/(V·s) were measured for p-channel and n-channel
operation, respectively. In samples Q2, a p-channel field-effect
mobility value of 3.7 × 10-5 cm2/(V·s) was obtained in samples
annealed at 110 °C, and the best p-channel field-effect mobility
value of 9.2 × 10-5 cm2/(V ·s) was obtained in unannealed samples
demonstrating the importance of surface treatment on device
performance. Higher charge mobility could be achieved by maxi-
mizing the polymer interchain interactions.
In conclusion, a new soluble, spray-processable, donor-acceptor
polymer has been synthesized and shows an optical bandgap of
0.5-0.6 eV, which is the lowest value reported for a soluble spray-
processable polymer. Four differently colored redox states of the
polymer can be accessed at moderate potentials and have good
stability. The polymer also shows potential for use in ambipolar
OFETs with respectable mobilities for a solution-processed device.
We are currently investigating other applications such as detectors
and infrared two-photon absorptivity.
(7) (a) Ogawa, K.; Rasmussen, S. C. J. Org. Chem. 2003, 68, 2921–2928. (b)
Ogawa, K.; Rasmussen, S. C. Macromolecules 2006, 39, 1771–1778. (c)
Pappenfus, T. M.; Hermanson, B. J.; Helland, T. J.; Lee, G. G. W.; Drew,
S. M.; Mann, K. R.; McGee, K. A.; Rasmussen, S. C. Org. Lett. 2008, 10,
1553–1556.
(8) (a) Karikomi, M.; Kitamura, C.; Tanaka, S.; Yamashita, Y. J. Am. Chem.
Soc. 1995, 117, 6791–6792. (b) Kitamura, C.; Tanaka, S.; Yamashita, Y.
Chem. Mater. 1996, 8, 570–578.
(9) (a) Bundgaard, E.; Krebs, F. C. Sol. Energy Mater. Sol. Cells 2007, 91,
1019–1025. (b) Bundgaard, E.; Krebs, F. C. Macromolecules 2006, 39,
2823–2831.
(10) Steckler, T. T.; Abboud, K. A.; Craps, M.; Rinzler, A. G.; Reynolds, J. R.
Chem. Commun. 2007, 4904–4906.
(11) Bao, Z.; Chan, W. K.; Yu, L. J. Am. Chem. Soc. 1995, 117, 12426–12435.
(12) Zhou, E.; Nakamura, M.; Nishizawa, T.; Zhang, Y.; Wei, Q.; Tajima, K.;
Yang, C.; Hashimoto, K. Macromolecules 2008, 41, 8302–8305.
(13) Wu, Z.; Chen, Z.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras,
K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F.; Rinzler, A. G. Science
2004, 305, 1273–1276.
(14) Salzner, U.; Ko¨se, M. E. J. Phys. Chem. B 2002, 106, 9221–9226.
(15) Dubois, C. J.; Abboud, K. A.; Reynolds, J. R. J. Phys. Chem. B 2002, 108,
8550–8557.
Acknowledgment. This work was funded in part by DARPA
(N00014-06-1-0897), the Office of Naval Research (at GIT and
N00014-08-1-0928), the AFOSR (FA9550-06-1-0192), and the STC
JA809372U
9
2826 J. AM. CHEM. SOC. VOL. 131, NO. 8, 2009