B. Lygo et al. / Tetrahedron Letters 44 (2003) 2529–2532
2531
be readily separated from the corresponding endo-iso-
Acknowledgements
mer,17 and because the Weinreb amide functionality
appearedtoofferthebestmeansofintroducingthepyrone
moiety.
We thank the EPSRC for funding and GSK for stu-
dentship support (to D.H.).
It was found that reaction of Weinreb amide 7e with the
dianion derived from tert-butyl acetoacetate18 allowed
access to triketide 9, and that this intermediate could be
readily converted into the corresponding 4-hydroxypy-
rone10.19 IntroductionoftheC-14formylsubstituentinto
the pyrone ring of solanapyrone precursors such as 9 is
a notorious problem,6b,7,11 and all attempts at directly
introducing this substituent have so far proved unsuccess-
References
1. (a) Ichihara, A.; Tazaki, H.; Sakamura, S. Tetrahedron
Lett. 1983, 24, 5373; (b) Alam, S. S.; Bilton, J. N.;
Slawin, A. M. Z.; Williams, D. J.; Sheppard, R. N.;
Strange, R. N. Phytochemistry 1989, 28, 2627; (c)
Oikawa, H.; Yokota, T.; Sakano, C.; Suzuki, Y.; Naya,
A.; Ichihara, A. Biosci. Biotechnol. Biochem. 1998, 62,
2016.
2. Two different structures have been assigned the name
solanapyrone E,1,3 here we use the notation E and E% to
distinguish them.
3. Jenkins, K. M.; Toske, S. G.; Jensen, P. R.; Fenical, W.
Phytochemistry 1998, 49, 2299.
4. Mizushina, Y.; Kamisuki, S.; Kasai, N.; Shimazaki, N.;
Takemura, M.; Asahara, H.; Linn, S.; Yoshida, S.; Mat-
sukage, A.; Koiwai, O.; Sugawara, F.; Yoshida, H.;
Sakaguchi, K. J. Biol. Chem. 2002, 277, 630.
ful. Recently
a
phenylthiomethylation–Pummerer
sequence was successfully applied in the synthesis of
solanapyrone D.7 Here we report an alternative approach
which employs the facile O to C rearrangement of a mixed
oxalate ester (Scheme 5). Thus treatment of 4-hydroxypy-
rone 10 with methyl oxalyl chloride in the presence of
triethylamine was found to give a C-acylated intermediate
which could be regioselectively methylated using diazo-
methane. This provided the key intermediate 11 in good
overall yield. This then allowed straightforward access to
solanapyrone A via conversion of 11 into the correspond-
ing a-hydroxy acid followed by periodate cleavage.
5. Oikawa, H.; Suzuki, Y.; Naya, A.; Katayama, K.; Ichi-
hara, A. J. Am. Chem. Soc. 1994, 116, 3605.
We have also demonstrated that solanapyrone B can be
prepared in good yield simply by reaction of solanapyrone
A with sodium borohydride. Samples of solanapyrone A
and B prepared in this way had 1H NMR spectra
consistent with those previously reported for the natural
products.1
6. (a) Oikawa, H.; Suzuki, Y.; Katayama, K.; Naya, A.;
Sakano, C.; Ichihara, A. J. Chem. Soc., Perkin Trans. 1
1999, 1225; (b) Oikawa, H.; Kobayashi, T.; Katayama,
K.; Suzuki, Y.; Ichihara, A. J. Org. Chem. 1998, 63, 8748;
(c) Oikawa, H.; Katayama, K.; Suzuki, Y.; Ichihara, A.
J. Chem. Soc., Chem. Commun. 1995, 1321; (d) Ichihara,
A.; Miki, M.; Tazaki, H.; Sakamura, S. Tetrahedron Lett.
1987, 28, 1175.
7. For a non-Diels–Alder approach to the solanapyrones D
and E%, see: (a) Hagiwara, H.; Kobayashi, K.; Miya, S.;
Hoshi, T.; Suzuki, T.; Ando, M.; Okamoto, T.;
Kobayashi, M.; Yamamoto, I.; Ohtsubo, S.; Kato, M.;
Uda, H. J. Org. Chem. 2002, 67, 5969; (b) Hagiwara, H.;
Kobayashi, K.; Miya, S.; Hoshi, T.; Suzuki, T.; Ando,
M. Org. Lett. 2001, 3, 251.
In conclusion, we have established that 2,8,10-dodeca-
trienoicacidWeinrebamide6eundergoesanexo-selective
thermal Diels–Alder reaction and that the resulting
cycloadduct 7e can be utilizedin the synthesis ofsolanapy-
rones A and B.
8. Thermal Diels–Alder reactions involving substrates of
type 1 (EWG=CHO, COR, CO2R, NO2) are generally
non-selective see for example: (a) Williams, D. R.; Brugel,
T. A. Org. Lett. 2000, 2, 1023; (b) Witter, D. J.; Vederas,
J. C. J. Org. Chem. 1996, 61, 2613; (c) Jung, S. H.; Lee,
Y. S.; Park, H.; Kwon, D.-S. Tetrahedron Lett. 1995, 36,
1051; (d) Roush, W. R.; Essenfeld, A. P.; Warmus, J. S.
Tetrahedron Lett. 1987, 28, 2447; (e) Funk, R. L.; Zeller,
W. E. J. Org. Chem. 1982, 47, 180; (f) Roush, W. R.;
Gillis, H. R. J. Org. Chem. 1982, 47, 4825; (g) Roush, W.
R.; Hall, S. E. J. Am. Chem. Soc. 1981, 103, 5200; (h)
Joshi, B. S.; Viswanathan, N.; Gawad, D. H.; Balakrish-
nan, V.; Von Philipsborn, W. Helv. Chim. Acta 1975, 58,
2295.
9. Thermal Diels–Alder reactions involving substrates of
type 1 (EWG=SO2R, SONR) have been shown to give
good levels of exo-selectivity, see: (a) Craig, D.; Geach,
N. J.; Pearson, C. J.; Salwin, A. M. Z.; White, A. J. P.;
Williams, D. J. Tetrahedron 1995, 51, 6071; (b) Craig, D.;
Fischer, D. A.; Kemal, O.; Marsh, A.; Plessner, T.;
Salwin, A. M. Z.; Williams, D. J. Tetrahedron 1991, 47,
3095.
Scheme 5. Reagents and conditions: (i) CH3COCH2CO2t-Bu,
NaH, THF; n-BuLi, 0°C, 81% (50% conv.); (ii) CF3CO2H,
CH2Cl2; Ac2O; NaHCO3, rt, 63%; (iii) ClCOCO2Me, Et3N,
CH2Cl2, rt; CH2N2, 83%; (iv) NaBH4, MeOH, rt; aq. NaOH
(0.2 M), rt, 70%; (v) NaIO4/SiO2, CH2Cl2, rt, 86%; (vi) NaBH4,
MeOH, rt, 79%.