C. M. Seong et al. / Tetrahedron Letters 50 (2009) 1029–1031
1031
_
Base:H
N
C
N
NH
_
Base:
3
N
R
N
R
N
R
H
Base:
A
B
C
_
H:Base
Ac O, Et N
NH
2
3
NH
2
5
CH Cl
2
2
N
N
R
R
D
4
Scheme 2. A plausible mechanism for the cyclization of a disubstituted amino-benzonitrile 3.
6. (a) Hiremath, S. P.; Kaddargi, S. S.; Mruthyunjayaswamy, B. H. M.; Purohit, M. G.
Indian J. Chem., Sect. B 1980, 19B, 767; (b) Yarosh, A. V.; Velezheva, V. S.; Kozik,
T. A.; Suvorov, N. N. Khim. Geterotsikl. Soedin. 1977, 11, 481.
7. Przheval’skii, N. M.; Skvortsova, N. S.; Magedov, I. V. Chem. Heterocycl. Compd.
2002, 38, 1055.
8. (a) Radl, S.; Hezky, P.; Urbankova, J.; Vachal, P.; Krejci, I. Collect. Czech. Chem.
Commun. 2000, 65(2), 280; (b) Santagati, A.; Longmore, J.; Guccione, S.; Langer,
T.; Tonnel, E.; Modica, M.; Santagati, M.; Scolaro, L. M.; Russo, F. Eur. J. Med.
Chem. 1997, 32(12), 973; (c) Couture, A.; Deniau, E.; Gimbert, Y.; Grandclaudon,
P. Tetrahedron 1993, 49, 1431.
ylideneamine. Tautomerization of intermediate C to the 1H-indol-
3-ylamine 4 and subsequent acylation by Ac2O afforded acetylated
amino indoles 5. The cyclization of the amino-benzonitriles 3 toler-
ates with a wide variety substituents such as methyl, ethyl, propyl,
benzyl, and phenyl, and hence represents a potential general meth-
od for the synthesis of 3-(N-acylamino)-2-phenylindoles. More-
over, the cyclization featuring mild reaction conditions, short
reaction time, easy workup, and good yields would make it attrac-
tive for the synthesis of 3-amino indole derivatives.
In summary, the base-mediated intramolecular condensation of
2-(disubstituted amino)-benzonitriles has proved to be a useful
and highly efficient process for the synthesis of potentially valu-
able 3-aminoindoles under mild conditions.
9. Juby, P. F.; Hudyma, T. W.; Brown, M. J. Med. Chem. 1968, 11, 111.
10. Bergman, J.; Brynolf, A.; Vuorinen, E. Tetrahedron 1986, 42, 3689.
11. General procedure for the preparation of 1-substituted-N-(2-phenyl-1H-indol-3-
yl)acetamides 5: Disubstituted amino-benzonitrile 3 (1.0 mmol) was added to a
mixture of 60% NaH (1.3 mmol, 60% (w/w) in mineral oil) in DMF (5.0 mL) at
room temperature and was stirred at 80 °C for 40 min. Acetic anhydride
(1.2 mmol) was added at 0 °C and the reaction mixture was stirred at room
temperature for 1 h. The reaction mixture was poured into water (40 mL),
extracted with CH2Cl2 (50 mL), dried, concentrated, and purified by column
chromatography on silica gel (ethyl acetate/n-hexane = 1:3) to give an
inseparable mixture of two amide rotamers 5. Spectral data for selected
products:N-1-Benzyl-2-phenyl-1H-indol-3-yl)acetamide (5d): bright yellow
solid (ratio of two amide rotamers = 1:1.3); 87% yield; mp 170–174 °C; 1H
NMR (200 MHz, CDCl3) (major rotamer) d 2.18 (s, 3H, COCH3), 5.31 (s, 2H,
PhCH2), 6.77 (br s, 1H, NH), 6.93–7.04 (m, 2H, ArH), 7.16–7.42 (m, 11H, ArH),
7.55–7.62 (m, 1H, ArH) (minor rotamer) d 1.83 (s, 3H, COCH3), 5.25 (s, 2H,
PhCH2), 6.72 (br s, 1H, NH), 6.93–7.04 (m, 2H, ArH), 7.16–7.42 (m, 11H, ArH),
7.55–7.62 (m, 1H, ArH); 13C NMR (75 MHz, CDCl3) (major rotamer) d 23.3, 47.8,
110.7, 111.1, 119.0, 120.5, 122.7, 124.9, 126.0, 127.2, 128.5, 128.7, 128.8, 129.4,
130.1, 137.3, 137.5, 137.9, 170.5 (minor rotamer) d 20.3, 47.8, 110.9, 112.1,
117.8, 121.0, 123.1, 125.8, 126.0, 127.5, 128.2, 128.7, 129.0, 129.7, 130.0, 135.4,
135.7, 136.0, 174.4; MS (EI) m/e (relative intensity): 340 (M+, 100), 297 (29),
207 (67); HRMS (EI): m/e [M]+ calcd for C23H20N2O1: 340.1576; found:
340.1572.(1-Benzyl-2-phenyl-1H-indol-3-yl)dimethylamine (6): Benzonitrile 3d
(300 mg, 1.00 mmol) was added to a mixture of 60% NaH (50 mg, 1.3 mmol) in
DMF (5.0 mL) at room temperature and was stirred at 80 °C for 1 h. After the
starting benzonitrile 3d was disappeared, the additional amount of 60% NaH
Acknowledgments
We thank Korea Tomorrow and Globalization (KT&G) Co., Ltd.
for financial support. We also wish to thank Dr. You-Hui Lee for
helpful discussions.
References and notes
1. (a) Lim, K.-H.; Hiraku, O.; Komiyama, K.; Koyano, T.; Hayashi, M.; Kam, T.-S. J.
Nat. Prod. 2007, 70, 1302; (b) Sundberg, R. J. Indoles; Academic Press: London,
1996; (c) Brown, R. K. In Indoles; Houlihan, W. J., Ed.; Wiley-Interscience: New
York, 1972; (d) Faulkner, D. J. Nat. Prod. Rep. 2001, 18, 1.
2. (a) Sundberg, R. J. The Chemistry of Indoles; Academic Press: New York, 1970; (b)
Sundberg, R. J. In Best Synthetic Methods, Indoles; Academic Press: New York,
1996; pp 7–11; (c) Joule, J. A. In Science of Synthesis: Houben-Weyl Methods of
Molecular Transformations; Thomas, E. J., Ed.; George Thieme Verlag: Stuttgart,
Germany, 2000. Category 2, Vol. 10, Chapter 10.13; (d) Bandini, M.; Melloni, A.;
Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004, 43, 550; (e) Austin, J. F.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 1172; (f) Srivastava, N.; Banik,
B. K. J. Org. Chem. 2003, 68, 2109.
3. (a) Campos, K. R.; Woo, J. C. S.; Lee, S.; Tillyer, R. D. Org. Lett. 2004, 6, 79; (b)
Hong, K. B.; Lee, C. W.; Yum, E. K. Tetrahedron Lett. 2004, 45, 693; (c) Kohling, P.;
Schmidt, A. M.; Eilbracht, P. Org. Lett. 2003, 5, 3213.
4. (a) Wagaw, S.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 6621; (b)
Hughes, D. L. Org. Prep. Proced. Int. 1993, 25, 607; (c) Katritzky, A. R.; Rachwal,
S.; Bayyuk, S. Org. Prep. Proced. Int. 1991, 23, 357; (d) Robinson, B. The Fischer
Indole Synthesis; John Wiley & Sons: Chichester, 1982.
(50 mg, 1.3 mmol) and an iodomethane (140 lL, 2.20 mmol) were added to the
reaction mixture. After stirring at room temperature for 2 h, the reaction was
quenched by the addition of 0.1 N HCl aqueous solution (50 mL). The resulting
mixture was extracted with CH2Cl2 (50 mL Â 3), washed with water
(50 mL Â 3), and dried over anhydrous Na2SO4. The organic phase was
concentrated under reduced pressure. Purification of the residues was done
by a flash column chromatography on silica gel (ethyl acetate/n-hexane = 1:10)
to afford a yellow solid 6 (202 mg, 62%): mp 96–98 °C; 1H NMR (200 MHz,
CDCl3) d 2.82 (s, 6H, N(CH3)2), 5.12 (s, 2H, PhCH2), 6.91–7.01 (m, 2H, ArH),
7.11–7.23 (m, 6H, ArH), 7.25–7.35 (m, 5H, ArH), 7.82 (m, 1H, ArH); 13C NMR
(75 MHz, CDCl3) d 45.8, 47.2, 110.4, 119.0, 119.6, 121.8, 124.5, 126.1, 127.0,
128.0, 128.1, 128.4, 128.5, 131.0, 132.2, 133.2, 135.5, 138.4; MS (EI) m/e
(relative intensity): 326 (M+,71), 235 (100), 219 (57), 91 (15); HRMS (EI): m/e
[M]+ calcd for C23H22N2: 326.1783; found: 326.1774.
5. Suvorov, N. N.; Velezheva, V. S.; Yarosh, A. V.; Erofeev, Y. V.; Kozik, T. N. Khim.
Geterotsikl. Soedin. 1975, 8, 1099.