when appropriately functionalized, ADTs normally show
improved stability relative to pentacenes.2e,3b,4 To date,
however, ADT and its derivatives have typically been syn-
thesized and studied as a mixture syn- and anti-isomers
(1 and 2, respectively),3 although the study of isomerically
pure ADTs has recently been achieved in two cases.5,6
Intrigued by the performance of ADTs in semiconduct-
ing devices and challenged by the issue of obtaining iso-
merically pure chromophores that might offer decreased
disorder compared to the isomeric ADT mixtures, we
targeted the synthesis of a new class of ADT analogues,
anthrabis[1]benzothiophenes (ABBTs, Figure 1). The ad-
ditional aromatic ring at each benzothiophene moiety of
the ABBTs results in a slightly bent or curved structure. It
was thus expected that disordered solid-state packing ob-
served for ADTs should be avoided for ABBTs via more
discriminate interactions in the solid, based on both steric
and electronic demands. Similar to ADTs, however, there
are two possible isomers for ABBTs, the syn- andanti-isomers
(3 and 4, respectively). In the present study, we report the sele-
ctive synthesis and properties of syn-ABBTs 5aꢀc(Scheme1).
The synthesis of ABBTs 5aꢀc began with commercially
available thianaphthene-3-carboxaldehyde (6). Protection
of the aldehyde as an acetal using 1,2-ethylene glycol
afforded 7. Lithiation of 7 followed by reaction with ethyl
formate provided the masked dialdehyde 8 in 70% yield. A
2-foldaldol condensation of9with8providedintermediate
10 in 94% yield.7 Global deprotection of the three acetal
groups of 10 was accomplished with catalytic In(OTf)3 (12
mol %) under reflux in acetone. These same conditions
effectedthesubsequent intramolecularaldol condensation,
leading to the one pot formation of quinone 11 in 67%
yield from 10.8 Isolated as a brown solid, quinone 11 is
sparingly soluble in common organic solvents. Neverthe-
less, reaction of 11 with various lithium acetylides could be
accomplished in THF at low temperature and afforded
diols 12aꢀc in moderate yields. Aromatization was accom-
Scheme 1. Synthesis of syn-ABBTs 5aꢀc
plished in the usual way with SnCl2 2H2O in the presence
3
of 10% aq H2SO4, providing ABBTs 5aꢀc in good yield.
(3) (a) Laquindanum, J. G.; Katz, H. E.; Lovinger, A. J. J. Am. Chem.
Soc. 1998, 120, 664–672. (b) Subramanian, S.; Park, S. K.; Parkin, S. R.;
Podzorov, V.; Jackson, T. N.; Anthony, J. E. J. Am. Chem. Soc. 2008,
130, 2706–2707. (c) Wang, J.; Liu, K.; Liu, Y.-Y.; Song, C.-L.; Shi, Z.-F.;
Peng, J.-B.; Zhang, H.-L.; Cao, X.-P. Org. Lett. 2009, 11, 2563–2566.
(d) Kim, C.; Huang, P.-Y.; Jhuang, J.-W.; Chen, M.-C.; Ho, J.-C.; Hu,
T.-S.; Yan, J.-Y.; Chen, L.-H.; Lee, G.-H.; Facchetti, A.; Marks, T. J.
Org. Electron. 2010, 11, 1363–1375. (e) Balandier, J.-Y.; Quist, F.; Stas,
S.; Tylleman, B.; Ragoen, C.; Mayence, A.; Bouzakraoui, S.; Cornil, J.;
Geerts, Y. H. Org. Lett. 2011, 13, 548–551. (f) Goetz, K. P.; Li, Z.; Ward,
J. W.; Bougher, C.; Rivnay, J.; Smith, J.; Conrad, B. R.; Parkin, S. R.;
Anthopoulos, T. D.; Salleo, A.; Anthony, J. E.; Jurchescu, O. D. Adv.
Mater. 2011, 23, 3698–3703.
Table 1. Thermal Properties of ABBTs 5aꢀc
DSC decompositiona
compd
TGA Td/ꢀCa
DSC mp/ꢀCa
onset/ꢀC
peak/ꢀC
5a
5b
5c
415
360
380
414
319
242
414
347
345
415
360
355
a Measured under nitrogen atmosphere.
(4) (a) Kaur, I.; Jia, W.; Kopreski, R. P.; Selvarasah, S.; Dokmeci,
M. R.; Pramanik, C.; McGruer, N. E.; Miller, G. P. J. Am. Chem. Soc.
2008, 130, 16274–16286. (b) Northrop, B. H.; Houk, K. N.; Maliakal, A.
Photochem. Photobiol. Sci. 2008, 7, 1463–1468. (c) Li, Y.; Wu, Y.; Liu, P.;
Prostran, Z.; Gardner, S.; Ong, B. S. Chem. Mater. 2007, 19, 418–423. (d)
Maliakal, A.; Raghavachari, K.; Katz, H.; Chandross, E.; Siegrist, T.
Chem. Mater. 2004, 16, 4980–4986. (e) Ono, K.; Totani, H.; Hiei, T.;
Yoshino, A.; Saito, K.; Eguchi, K.; Tomura, M.; Nishida, J.-I.; Yamashita,
Y. Tetrahedron 2007, 63, 9699–9704.
(5) For examples of the synthesis of isomerically pure ADTs, see:
(a) Li, Z.; Lim, Y.-F.; Kim, J. B.; Parkin, S. R.; Loo, Y.-L.; Malliaras,
G. G.; Anthony, J. E. Chem. Commun. 2011, 47, 7617–7619. (b) Tylleman,
B.; Vande Velde, C. M. L.; Balandier, J.-Y.; Stas, S.; Sergeyev, S.;
Geerts, Y. H. Org. Lett. 2011, 13, 5208–5211.
ABBT 5a has limited solubility in common solvents,
while derivatives 5b,c show much improved solubility
because of the larger trialkylsilyl groups and can be easily
dissolved in solvents such as THF, CH2Cl2, and CHCl3.
The constitution of the trialkylsilyl group also affects the
thermal properties as assessed by differential scanning
calorimetry (DSC) and thermogravimetric analysis (TGA,
Table 1). i-Pr3Si-substituted ABBT 5a has the highest
(6) For examples of the synthesis of isomerically pure naphthodithio-
phenes, see: (a) Shinamura, S.; Osaka, I.; Miyazaki, E.; Nakao, A.;
Yamagishi, M.; Takeya, J.; Takimiya, K. J. Am. Chem. Soc. 2011, 133,
5024–5035. (b) Osaka, I.; Abe, T.; Shinamura, S.; Takimiya, K. J. Am.
Chem. Soc. 2011, 133, 6852–6860. (c) Loser, S.; Bruns, C. J.; Miyauchi,
H.; Ortiz, R. P.; Facchetti, A.; Stupp, S. I.; Marks, T. J. J. Am. Chem.
Soc. 2011, 133, 8142–8145.
(7) While the stereochemistry about the olefins formed from the aldol
condensation has not been assigned, NMR spectroscopic data suggest
only one isomer.
(8) Quinone 11 has been previously synthesized as a mixture of syn-
and anti-isomers using a significantly different approach; see: Reid, W.;
Bender, H. Chem. Ber. 1956, 89, 1574–1577.
Org. Lett., Vol. 14, No. 1, 2012
63