522
X. Huang, L. Zhang / Journal of Organometallic Chemistry 694 (2009) 520–523
Scheme 3. Proposed mechanism for 1,5-cyclooctadiene formation.
Table 1
Au-catalyzed dimerization of 4 under various reaction conditions
Entry
Catalyst (5 mol%)
Solvent
Temperature (°C)
Time (h)
Yield (%)a
6:7b
1
2
3
4
5
6
7
8
9
10
5
5
5
5
5
5
ClCH2CH2Cl
ClCH2CH2Cl
ClCH2CH2Cl
THF
Toluene
MeCN
ClCH2CH2Cl
ClCH2CH2Cl
ClCH2CH2Cl
Toluene
40
60
80
60
60
60
60
60
60
60
3
1
1
1
1
1
1
1
1
1
42
56
33
55
52
17
46
52
52
–
4.5:1
4.2:1
3.9:1
4.5:1
6.4:1
2.5:1
3.8:1
1:2.1
3.9:1
–
AuCl3
Ph3PAuNTf2
PyAuCl3
PtCl2
a
Estimated by using diethyl phthalate as reference.
Determined by 1H NMR.
b
silica gel column using flash chromatography. meso-Dimer 6 was
isolated in 41% yield and the rac-dimer 7 was obtained in 9% yield.
Meso-Dimer 6: 1H NMR (400 MHz, CDCl3) d: 7.21–7.05 (m, 8H),
5.93 (d, 2H, J = 8.0 Hz), 5.83 (m, 2H), 3.58 (m, 2H), 2.20–2.14 (m,
4H), 2.07–2.00 (m, 2H), 1.75–1.58 (m, 6H). 13C NMR (125 MHz,
CDCl3) d: 153.2, 142.7, 133.3, 133.1, 132.2, 131.5, 130.4, 123.9,
122.5, 109.9, 109.6, 38.6, 29.0, 25.3, 20.4. IR (neat): 3352, 2936,
2254, 1771, 1601, 1482, 1379, 1045, 985; MS (ES+). Calculated
for [C30H26N2O4Na]+ 501.1; Found: 501.0. Racemic dimer 7: 1H
NMR (400 MHz, CDCl3) d: 7.22–7.20 (m, 2H), 7.12–7.04 (m, 4H),
6.84–6.81 (m, 1H), 5.79–5.77 (m, 2H), 5.75 (d, 2H, J = 8.8 Hz,),
4.20–4.13 (m, 2 H), 2.20–2.14 (m, 2H), 2.07–2.01 (m, 4H), 1.82–
1.62 (m, 6H). 13C NMR (125 MHz, CDCl3) d: 153.6, 142.5, 133.6,
132.4, 131.9, 131.7, 131.1, 123.9, 122.5, 109.8, 109.7, 36.5, 29.9,
25.4, 19.4. IR (neat): 2964, 2869, 2358, 1733, 1683, 1593, 1506,
1464, 1362, 1267, 910; MS (ES+). Calculated for [C30H26N2O4Na]+
501.1; Found: 501.0.
References
[1] A.S.K. Hashmi, Chem. Rev. 107 (2007) 3180–3211.
[2] A. Furstner, P.W. Davis, Angew. Chem., Int. Ed. 46 (2007) 3410–3449.
[3] E. Jimenez-Nunez, A.M. Echavarren, Chem. Commun. (2007) 333–346.
[4] N. Bongers, N. Krause, Angew. Chem., Int. Ed. 47 (2008) 2178–2181.
[5] D.J. Gorin, F.D. Toste, Nature 446 (2007) 395–403.
[6] N. Marion, S.P. Nolan, Angew. Chem., Int. Ed. 46 (2007) 2750–2752.
[7] S.M. Ma, S.C. Yu, Z.H. Gu, Angew. Chem., Int. Ed. 45 (2006) 200–203.
[8] N.T. Patil, Y. Yamamoto, ARKIVOC (v), 2007, pp. 6–19.
[9] L. Zhang, J. Sun, S.A. Kozmin, Adv. Synth. Catal. 348 (2006) 2271–2296.
[10] R.A. Widenhoefer, X.Q. Han, Eur. J. Org. Chem. (2006) 4555–4563.
[11] L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules
and Crystals: An Introduction to Modern Structural Chemistry, 3rd ed., Cornell
University Press, Ithaca, NY, 1960.
[12] Z. Shi, C. He, J. Am. Chem. Soc. 126 (2004) 13596–13597.
[13] Z. Shi, C. He, J. Org. Chem. 69 (2004) 3669–3671.
[14] L. Zhang, J. Am. Chem. Soc. 127 (2005) 16804–16805.
Acknowledgments
[15] S. Wang, L. Zhang, J. Am. Chem. Soc. 128 (2006) 8414–8415.
[16] S. Wang, L. Zhang, J. Am. Chem. Soc. 128 (2006) 14274–14275.
[17] P. Dube, F.D. Toste, J. Am. Chem. Soc. 128 (2006) 12062–12063.
[18] L. Wei, C.J. Li, J. Am. Chem. Soc. 125 (2003) 9584–9585.
[19] (a) Addition of electrophiles to the C–C double bond of alkenygolds followed
by facile elimination of Au can account for their nucleophilicity. For such
proposed mechanisms, see: I. Nakamura, T. Sato, Y. Yamamoto, Angew. Chem.,
Int. Ed. 45 (2006) 4473–4475;
(b) E. Jimenez-Nunez, C.K. Claverie, C. Nieto-Oberhuber, A.M. Echavarren,
Angew. Chem., Int. Ed. 45 (2006) 5452–5455.
[20] For a previous study of Au-catalyzed imidate cyclization, see: A.S.K. Hashmi,
M. Rudolph, S. Schymura, J. Visus, W. Frey, Eur. J. Org. Chem. 71 (2006) 4905–
4909.
Generous financial supports from ACS PRF (43905-G1), ORAU
and Merck are appreciated. The acquisition of an NMR spectrome-
ter and upgrade of an existing NMR spectrometer is funded by NSF
CHE-0521191 and the X-ray diffractometer purchase was sup-
ported by NSF Grant CHE-0226402.
Appendix A. Supplementary material
CCDC 644034 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
[21] G. Zhang, X. Huang, G. Li, L. Zhang, J. Am. Chem. Soc. 130 (2008) 1814–1815.
[22] G. Zhang, L. Zhang, J. Am. Chem. Soc. 130 (2008) 12598–12599.
[23] M.E. Krafft, J.W. Cran, Synlett (2005) 1263–1266.