1984
Russ.Chem.Bull., Int.Ed., Vol. 56, No. 10, October, 2007
Roitershtein et al.
Electronic absorption spectrum (THF) λmax/nm: 320, 390,
560. 1H NMR (500 MHz, THFꢀd8), δ: 4.59—4.63 (m, 1 H);
5.82—5.86 (m, 2 H); 5.88—5.90 (m, 1 H); 5.95—5.99 (m, 1 H);
6.53—6.58 (m, 1 H); 6.61—6.64 (m, 1 H); 6.69—6.74 (m, 1 H);
6.77—6.82 (m, 1 H); 6.87—6.93 (m, 2 H); 6.96—7.02 (m, 1 H);
7.03—7.08 (m, 2 H); 7.14—7.22 (m, 6 H); 7.22—7.27 (m, 1 H);
7.27—7.33 (m, 2 H); 7.34—7.42 (m, 4 H); 7.50—7.54 (m, 1 H);
7.58—7.62 (m, 2 H); 7.68—7.72 (m, 2 H); 7.93—7.98 (m, 1 H).
13C{1H} NMR (75 MHz, THFꢀd8), δ: 88.4, 88.6, 95.0, 95.5,
102.3, 111.5, 112.2, 112.5, 114.5, 119.5, 122.3, 122.4, 122.5,
125.3, 125.8, 126.7, 126.8, 127.9, 128.1, 128.3, 128.4, 128.7,
129.35, 129.36, 129.6, 133.3, 133.9, 135.7, 136.5, 138.9, 140.6,
141.0, 143.1, 144.1, 144.9.
Darkꢀred crystals of the byꢀproduct insoluble in toluene
were washed three times with toluene and recrystallized
from THF. The lutetium content, the electronic absorption specꢀ
trum, and the 1H and 13C NMR spectra of the product were
identical to those for the [Na(THF)5][Lu(Ph4C2)2] complex
described earlier.4 The product was obtained as red crystals in a
yield of 0.302 g (0.247 mmol, 6% based on lutetium).
This study was financially supported by the Russian
Foundation for Basic Research (Project No. 04ꢀ03ꢀ
32737a).
References
1. H. Heijden, P. van der Pasman, E. J. M. de Boer, and C. J.
Schaverien, Organometallics, 1989, 8, 1459.
2. M. G. Klimpel, H. W. Gorlitzer, M. Tafipolsky, M. Spiegler,
W. Scherer, and R. Anwander, J. Organomet. Chem., 2002,
647, 236.
3. (a) R. Zhang and M. Tsutsui, Chem. Abstr., 1982, 98, 198374;
(b) H. Schumann, J. Winterfeld, M. Glanz, R. D. Kohn,
and H. Hemling, J. Organomet. Chem., 1994, 481, 275;
(c) C. M. Forsyth, G. B. Deacon, L. D. Field, C. Jones,
P. C. Junk, D. L. Kay, A. F. Masters, and A. F. Richards,
Chem. Commun., 2006, 1003.
4. D. M. Roitershtein, M. E. Minyaev, K. A. Lyssenko,
P. A. Belyakov, and M. Yu. Antipin, Izv. Akad. Nauk, Ser.
Khim., 2004, 2060 [Russ. Chem. Bull., Int. Ed., 2004,
10, 2152].
[1,3ꢀDiphenylcyclopentadienidelutetium dichloride] trisꢀ
5
tetrahydrofuranate, (η ꢀ1,3ꢀPh2C5H3)LuCl2(THF)3 (2). The
LuCl3(THF)3 complex (1.755 g, 3.53 mmol) was added with
stirring to a solution of sodium diphenylcyclopentadienide
in THF (50 mL), which was prepared from diphenylcycloꢀ
pentadiene (0.786 g, 3.60 mmol) and sodium hydride (0.297 g,
12.4 mmol). The reaction mixture was stirred for 24 h. The
product was extracted with THF (3×50 mL), the extract was
concentrated, and the dry residue was extracted with toluene
(3×50 mL) and recrystallized from THF. Colorless crystals of
(1,3ꢀPh2C5H3)LuCl2(THF)3 were obtained in a yield of 1.270 g
(1.87 mmol, 53%). Found (%): Lu, 25.99. C29H37O3LuCl2. Calꢀ
5. D. M. Roitershtein, J. W. Ziller, and W. J. Evans, J. Am.
Chem. Soc., 1998, 120, 11342.
6. M. Szwarc, Carbanions. Living Polymer and Electron Transꢀ
fer Processes, Interscience, New York, 1968.
7. A. L. Wayda, J. Organomet. Chem., 1989, 361, 73.
8. S. Manastyrskyj, R. E. Maginn, and M. Dubeck, Inorg.
Chem., 1963, 2, 904.
9. H. Schumann, J. A. MeeseꢀMarktscheffel, A. Dietrich, and
F. Gorlitz, J. Organomet. Chem., 1989, 377, C5.
10. Cambridge Structural Database System, Version 5.27, 2005.
11. (a) Y. Guangdi, F. Yuguo, J. Zhongsheng, X. Yan, and
Ch. Wenqi, J. Organomet. Chem., 1987, 322, 57;
(b) G. Depaoli, U. Russo, G. Valle, F. Grandjean, A. F.
Williams, and G. J. Long, J. Am. Chem. Soc., 1994, 116,
5999; (c) Zh. Wu, Zh. Xu, X. You, X. Zhou, and L. Shi,
J. Coord. Chem., 1992, 26, 329; (d) Zh. Wu, Zh. Xu, X. You,
X. Zhou, H. Wang, and Y. Yang, Polyhedron, 1993, 12, 795;
(e) C. S. Day, V. W. Day, R. D. Ernst, and S. H. Vollmer,
Organometallics, 1982, 1, 998; (f) M. Adam, X.ꢀF. Li,
W. Oroschin, and R. D. Fischer, J. Organomet. Chem., 1985,
296, C19; (g) X. Zhou, Zh. Wu, H. Ma, Zh. Xu, and X. You,
Polyhedron, 1994, 13, 375; (h) G. B. Deacon, G. D. Fallon,
and D. L. Wilkinson, J. Organomet. Chem., 1985, 293, 45;
(i) G. V. Khoroshen´kov, A. A. Fagin, M. N. Bochkarev,
S. Dechert, and H. Schumann, Izv. Akad. Nauk, Ser. Khim.,
2003, 1627 [Russ. Chem. Bull., Int. Ed., 2003, 9, 1715];
(j) P. N. Hazin, J. C. Huffman, and J. W. Bruno, Organomeꢀ
tallics, 1987, 6, 23; (k) W.ꢀP. Leung, F.ꢀQu. Song, F. Xue,
Z.ꢀY. Zhang, and T. C. W. Mak, J. Organomet. Chem., 1999,
582, 292; (l) Zuowei Xie, Shaowu Wang, ZhongꢀYuan Zhou,
and T. C. W. Mak, Organometallics, 1999, 18, 1641.
12. Ch. Ni, Zh. Zhang, D. Deng, and Ch. Qian, J. Organomet.
Chem., 1986, 306, 209.
1
culated (%): Lu, 25.75. H NMR (250 MHz, THFꢀd8), δ: 6.62
(d, 2 H); 7.00—7.12 (m, 3 H); 7.23—7.35 (t, 4 H); 7.77 (d, 4 H).
13C{1H} NMR (75 MHz, THFꢀd8), δ: 110.4, 110.8, 126.1, 126.6,
127.0, 129.5, 138.9.
[Cyclopentadienidelutetium dichloride] trisꢀtetrahydroꢀ
5
furanate, (η ꢀC5H5)LuCl2(THF)3 (5). Complex 5 was syntheꢀ
sized according to a known procedure15 from lutetium chloꢀ
ride trisꢀtetrahydrofuranate and sodium cyclopentadienide in
51% yield. 1H NMR (250 MHz, THFꢀd8, 297 K), δ: 6.15 (s).
13C{1H} NMR (63 MHz, THFꢀd8), δ: 111.1.
Xꢀray diffraction study of complexes 1, 2, and 5. Single crysꢀ
tals of 1, 2, and 5 were grown by crystallization from THF.
Samples were prepared for the Xꢀray diffraction study according
to a procedure described earlier.19 Xꢀray diffraction data for
compounds 1 and 2 were collected on a Smart 1000 CCD
diffractometer (λ(MoꢀKα) = 0.71072 Å); for compound 5, on a
Smart APEX II CCD diffractometer (λ(MoꢀKα) = 0.71072 Å).
The crystallographic data and the principal refinement statistics
for complexes 1, 2, and 5 are given in Table 7. Semiempirical
absorption corrections were applied based on equivalent reflecꢀ
tions with the use of the SADABS program.20 The structures
were solved by direct methods and refined by the fullꢀmatrix
leastꢀsquares method based on F 2 with anisotropic displaceꢀ
ment parameters for nonhydrogen atoms and isotropic displaceꢀ
ment parameters for hydrogen atoms with the use of the
SHELXTLꢀ97 program package. All hydrogen atoms in the strucꢀ
tures of 1, 2, and 5 were positioned geometrically and refined
using a riding model. In all structures, uncoordinated solvent
molecules are absent.
13. L. Gong, A. Streitwieser, Jr., and A. Zalkin, Chem. Commun.,
1987, 460.
14. Z. Xie, Zh. Liu, F. Xue, Z. Zhang, and T. C. W. Mak,
J. Organomet. Chem., 1997, 542, 285.
15. H. Schumann, K. Hermann, S. H. Muhle, and S. Dechert,
Z. Anorg. Allg. Chem., 2003, 629, 1184.