M. Li et al. / Bioorg. Med. Chem. Lett. 19 (2009) 4107–4109
4109
Chung, M. K. Regul. Toxicol. Pharm. 2004, 40, 356; (b) Graul, A. I.; Prous, J. R. Drug
News Perspect. 2005, 18, 21.
7. Bom, D.; Curran, D. P.; Kruszewski, S.; Zimmer, S. G.; Strode, J. T.; Kohlhagen, G.;
Du, W.; Chavan, A. J.; Fraley, K. A.; Bingcang, A. L.; Latus, L. J.; Pommier, Y.;
Burke, T. G. J. Med. Chem. 2000, 43, 3970.
up to be opposite. Perhaps, the 7-cycloalkyl CPT analogues would
change their binding model to the enzyme at this point as the ring
side increasing, and reduced its antitumor activity.
The relationship of structure–activity presents three situations.
Activities of derivatives of 7-cycloalkyl-CPT (CPT-cn, n = 3–7) or
10-OH-CPT (CPT-cn-OH, n = 5–7) on cell line A549/ATCC and that
of CPT-cn-OH or 7-cycloalkyl-10-OMe-CPT derivatives (CPT-cn-
OMe, n = 4–7) on cell line HT-29 generally respectively follow the
regularity that more lipophilic substitutions at 7-position would
lead higher antitumor activity, match the QSAR conclusion we
achieved before. However, activity of CPT-cn derivatives on cell
line A549/ATCC displays unordered, and situation of CPT-cn-OMe
derivatives act a contrary law to the QSAR conclusion on cell line
A549/ATCC. Methoxyl at 10-position displays to reduce the activi-
ties when the groups at 7-position become larger.
8. (a) Vladu, B.; Woynarowski, J. M.; Manikumar, G.; Wani, M. C.; Wall, M. E.; Von
Hoff, D. D.; Wadkins, R. M. Mol. Pharmacol. 2000, 57, 243; (b) Yin, M. B.; Guo, B.;
Vanhoefer, U.; Azrak, R. G.; Minderman, H.; Frank, C.; Wrzosek, C.; Slocum, H.
K.; Ristum, Y. M. Mol. Pharmacol. 2000, 57, 453; (c) Dallavalle, S.; Ferrari, A.;
Biasotti, B.; Merlini, L.; Penco, S.; Gallo, G.; Marzi, M.; Tinti, M. O.; Martinelli, R.;
Pisano, C.; Carminati, P.; Carenini, N.; Beretta, G.; Perego, P.; Cesare, D. M.;
Pratesi, G.; Zunino, F. J. Med. Chem. 2001, 44, 3264; (d) Dallavalle, S.; Ferrari, A.;
Merlini, L.; Penco, S.; Carenini, N.; Cesare, D. M.; Perego, P.; Pratesi, G.; Zunino,
F. Bioorg. Med. Chem. Lett. 2001, 11, 291; (e) Du, W.; Kaskar, B.; Blumbergs, P.;
Subramanian, P.-K.; Curran, D. P. Bioorg. Med. Chem. 2003, 11, 451; (f)
Manikumar, G.; Wadkins, R. M.; Bearss, D.; Von Hoff, D. D.; Wani, M. C.;
Wall, M. E. Bioorg. Med. Chem. Lett. 2004, 14, 5377; (g) Dallavalle, S.; Giannini,
G.; Alloatti, D.; Casati, A.; Marastoni, E.; Musso, L.; Merlini, L.; Morini, G.; Penco,
S.; Pisano, C.; Tinelli, S.; Cesare, M. D.; Beretta, G. L.; Zunino, F. J. Med. Chem.
2006, 49, 5177.
In summary, we reported a series of 7-cycloalkyl-CPT analogues
with their synthesis and biological evaluations. These analogues
display high antitumor activities on four human tumor cell lines
A549/ATCC, HT-29, NCI-H460 and HL60. The SAR studies mostly
support our previous QSAR conclusion. The exceptional com-
pounds might indicate differences of CPT-DNA-Top 1 complex
model from others.
9. Li, M.; Jiang, C.; Li, M.; You, T. J. Mol. St.-Th. 2005, 723, 165.
10. (a) Redinbo, R. R.; Stewart, L.; Kuhn, P.; Champoux, J. J.; Hol, W. G. J. Science
1998, 279, 1504; (b) Fan, J.; Weinstein, J. N.; Kohn, K. W.; Shi, L. M.; Pommier, Y.
J. J. Med. Chem. 1998, 41, 2216; (c) Fan, Y.; Shi, L. M.; Kohn, K. W.; Pommier, Y.;
Weinstein, J. N. J. Med. Chem. 2001, 44, 3254.
11. Sawada, S.; Nokata, K.; Furuta, T.; Yokokura, T.; Miyasaka, T. Chem. Pharm. Bull.
1991, 39, 2574.
12. Synthesis of 7-cyclohexylcamptothecin and 7-cyclohexyl-10-hydroxylcamptothecin
with Sawada method, general procedure: To a stirred solution of CPT (35 mg,
0.1 mmol) in HoAc (1.5 ml), deionized water (1.5 ml) and concd H2SO4 (0.4 ml)
in ice bath was add aldehyde (or cyclobutylmethanol) (0.3 mmol) and 30%
H2O2 (0.3 mmol). The stirring was continued for 3 h or stop according to the
TLC analysis. The reaction mixture was then diluted with ice water (6 ml) and
extracted with CH2Cl2 (10 ml  3). Combined organic layers were dried on
Na2SO4, evaporated and purified on silica gel column chromatography (1:100
MeOH/CHCl3).
Supplementary data
Supplementary data associated with this article can be found, in
13. Synthesis of 7-alkyl-camptothecin and 7-alkyl-10-hydroxylcamptothecin with
cycloalkyl bromides, general procedure: To the suspension of CPT (17 mg
0.05 mmol) in HOAc (2 ml) and acetone (1 ml) was added concd H2SO4
(0.03 ml), cycloalkyl bromides (0.4 mmol), Ph2SiH2 (0.45 mmol) and t-BuOOH
(1.0 mmol). The reaction mixture was heated on 80 °C oil bath and stirred for
8–12 h according to the TLC analysis. Then the reaction mixture was diluted
with ice water (10 ml) and extracted with CH2Cl2 (6 ml  3). The combined
organic phase was washed with brine, dried on anhydrous sodium sulfate,
evaporated and purified on silica gel column chromatography (1:100 MeOH/
CHCl3).
14. Methylation of 10-hydroxycamptothecin derivatives, general procedure: To the
suspension of 10-hydroxy-camptothecin derivatives (6, 8, 16–18, 0.1 mmol) in
anhydrous acetone (10 ml) was added anhydrous K2CO3 (0.5 mmol). After
stirring for 10 min, MeI (0.5 mmol) was added. The reaction mixture was then
stirred over night, cooled to room temperature, diluted with CH2Cl2 (20 ml),
washed with water, brine, and dried on anhydrous sodium sulfate, evaporated
and purified on silica gel column chromatography (1:100 MeOH/CHCl3) to give
compounds 19–23.
References and notes
1. Wall, M. E.; Wani, M. C.; Cook, C. E.; Palmer, K. H.; McPhail, A. T.; Sim, G. A. J.
Am. Chem. Soc. 1966, 94, 3888.
2. (a) Hsiang, Y.-H.; Hertzberg, R.; Hecht, S. M.; Liu, L. F. J. Biochem. 1985, 260,
14873; (b) Hsiang, Y.-H.; Lihou, M. G.; Liu, L. F. Cancer Res. 1989, 49, 5077.
3. (a) Garcia-Carbonero, R.; Supko, J. G. Clin. Cancer Res. 2002, 8, 641; (b) Mark, S.
B. Nat. Prod. Rep. 2005, 22, 162; (c) Mark, S. B. Nat. Prod. Rep. 2008, 25, 475.
4. Sawada, S.; Okajima, S.; Aiyama, R.; Nokata, K. I.; Furuta, T.; Yokokura, T.;
Sugino, E.; Yamaguchi, K.; Miyasaka, T. Chem. Pharm. Bull. 1991, 39, 1446.
5. Kingsbury, W. D.; Boehm, J. C.; Jakas, D. R.; Holden, K. G.; Hecht, S. M.;
Gallagher, G.; Caranfa, M. J.; McCabe, F. L.; Faucette, L. F.; Johnson, R. K.;
Hertzberg, R. P. J. Med. Chem. 1991, 34, 98.
6. Belotecan (Camtobell) has been proved for treatment of ovarian and small cell
lung cancers in Korea since 2004. See reports: (a) Kim, J. C.; Shin, D. H.; Kim, S.
H.; Kim, J. K.; Park, S. C.; Son, W. C.; Lee, H. S.; Suh, J. E.; Kim, C. Y.; Ha, C. S.;