2H), 7.08 (t, Ar, 1H). 13C-NMR (100 MHz) d/ppm: 29.7 (tBu),
68.6 (tBu), 110.8 (Ar), 119.9 (Ar), 127.3 (Ar), 161.9 (Ar).
the molecule are present within the crystal with an occupancy
of 95 : 5%, thus the disorder could only be modelled for the
central Ge–O group as the 5% disorder in the O-tBu group was
not possible to model.
X-Ray crystallography†
Table 2 contains the crystal data and details of the X-
+
Notes and references
ray structural determination for {[2,6-OtBu2C6H3]3Ge}
2
-
{Al[OC(CF3)3]4} ·1.875CH2Cl2 and [2,6-OtBu2C6H3]3GeOH 4.
The data were collected at 100 K (2) and 150 K (4) using
a Bruker IPDS II diffractometer employing monochromated
1 V. Ya. Lee and A. Sekiguchi, Acc. Chem. Res., 2007, 40, 410.
2 A. Sekiguchi, M. Tsukamoto and M. Ichinohe, Science, 1997, 275, 60.
3 C. H. Suresh and N. Koga, Internet Electro., J. Mol. Design, 2002, 1,
603.
4 A. Sekiguchi, T. Fukawa, V. Ya. Lee, M. Nakamoto and M. Ichinohe,
Angew. Chem., 2003, 115, 1175, (Angew. Chem., Int. Ed., 2003, 42,
1143).
5 A. Sekiguchi, T. Fukawa, M. Nakamoto, V. Ya. Lee and M. Ichinohe,
J. Am. Chem. Soc., 2002, 124, 9865.
6 I. Krossing, Chem.–Eur. J., 2001, 7, 490.
7 J. Y. Corey, J. Am. Chem. Soc., 1975, 97, 3237.
8 A. Schnepf and C. Drost, Dalton Trans., 2005, 20, 3277.
9 H. Preut and F. Huber, Acta Crystallogr., Sect. B: Struct. Crystallogr.
Cryst. Chem., 1979, 35, 83.
10 I. Krossing, A. Bihlmeier, I. Raabe and N. Trapp, Angew. Chem., 2003,
115, 1569, (Angew. Chem., Int. Ed., 2003, 42, 1531).
11 S. Duttwyler, Q.-Q. Do, A. Linden, K. K. Baldridge and J. S. Siegel,
Angew. Chem., 2008, 120, 1743, (Angew. Chem., Int. Ed., 2008, 47,
1719).
˚
MoKa (0.71073 A) radiation from a sealed tube and equipped
with an Oxford Cryosystems cryostat. A numeric absorption
correction was applied using the optically determined shape of
the crystals. The structure was solved by direct methods and
refined by full-matrix least-square techniques (Programs used:
SHELXS and SHELXL19). The non-hydrogen atoms were refined
anisotropically and the hydrogen atoms were calculated using
a riding model, except the hydrogen atom of the OH group
in 4, which was found in the difference Fourier map. In both
compounds, a disorder appears, which was assigned using a split
model. In 2, one C(CF3)3 group is disordered at two positions
with an occupancy of 55:45%. In 4, two different orientations of
12 H. Wiberg, Lehrbuch der Anorganischen Chemie, Walter de Gruyter,
Berlin, Germany, 102nd edn, 2007, p. 138.
13 Quantum-chemical calculations were carried out with the RI-DFT
version of the Turbomole program package, by employing the Becke-
Perdew 86-functional. The basis sets were of SVP quality. The electronic
structure was analysed with the Ahlrichs-Heinzmann population
analysis based on occupation numbers. Turbomole: O. Treutler and
R. Ahlrichs, J. Chem. Phys., 1995, 102, 346–354. BP-86-functional:
J. P. Perdew, Phys. Rev. B: Condens. Matter Mater. Phys., 1986, 33,
8822–8824; A. D. Becke, Phys. Rev. A, 1988, 38, 3098–3100. RI-DFT:
Table 2 Crystal data and detail of structural determinations
+
{[2,6-OtBu2C6H3]3Ge} 2
[2,6-OtBu2C6H3]3-
-
Compound
{Al[OC(CF3)3]4} ·1.875CH2Cl2 GeOH 4
Formula
GeCl3.75AlF36O10C59.88H66.75
1862.89
100
Monoclinic
P21/n
18.1010(9)
24.3749(8)
18.2722(8)
90
106.088(4)
90
7746.2(6)
4
0.674
GeO7C42H64
753.52
150
Triclinic
¯
P1
11.869(2)
12.774(3)
13.757(3)
90.70(3)
95.43(3)
90.95(3)
2075.9(7)
2
FW/g mol-1
T/K
¨
K. Eichkorn, O. Treutler, H. Ohm, M. Ha¨ser and R. Ahlrichs, Chem.
Crystal system
Space group
Phys. Lett., 1995, 240, 283–290. SVP: A. Scha¨fer, H. Horn and R.
Ahlrichs, J. Chem. Phys., 1992, 97, 2571–2577. Ahlrichs-Heinzmann
population analysis: E. R. Davidson, J. Chem. Phys., 1967, 46, 3320–
3324; K. R. Roby, Mol. Phys., 1974, 27, 81–104; R. Heinzmann and
R. Ahlrichs, Theor. Chim. Acta, 1976, 42, 33–45; C. Erhardt and R.
Ahlrichs, Theor. Chim. Acta, 1985, 68, 231–245.
˚
a/A
˚
b/A
˚
c/A
a/◦
b/◦
g /◦
14 The shared electron numbers (SENs) for bonds are a reliable measure
of the covalent bonding strength. For example, the SEN for the Ge–Ge
single bond in the model compound R3Ge–GeR3 (R = NH2) is 1.04.
15 J. P. Hummel, D. Gust and K. Mislow, J. Am. Chem. Soc., 1974, 96,
3679.
16 NMR experiments show a higher yield of 2 than the isolated 45%.
17 DFT calculations also show that the elimination of iso-butene is
exothermic by 40 kJ mol-1.
18 K. Goto, I. Shimo and T. Kawashima, Bull. Chem. Soc. Jpn., 2003, 76,
2389; A. Kawachi, Y. Tanaka and K. Tamao, Organometallics, 1997,
16, 5102.
19 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008,
64, 112.
3
˚
V/A
Z
m/mm-1
0.783
1.205
D/g cm-3
1.597
Reflections measured 54 448
Reflections observed 12 332
14 158
7372
0.0667
0.948
Rint
0.0641
1.046
GOF
R1 (I < 2s)
wR2 (all data)
0.0438
0.1138
0.0475
0.1179
776 | Dalton Trans., 2009, 773–776
This journal is
The Royal Society of Chemistry 2009
©