P.K. Kundu et al. / Journal of Organometallic Chemistry 694 (2009) 382–388
387
(200 MHz, CDCl3): (recognizable peaks for 3c) d 0.99 (dd, 1H,
7.53 (m, 5H, Ph); 13C NMR (50 MHz, CDCl3): d À3.92, À3.41,
13.85 (2C), 13.99 (2C), 26.12, 28.30, 52.20, 61.08 (2C), 61.24 (2C),
127.71 (2C), 128.68, 129.17, 134.00 (2C), 137.27, 149.05, 163.65,
164.99, 169.10, 169.46; ESIMS: m/z (relative intensity) 515 (93,
[M+Na]+), 510 (33), 447 (33), 415 (10), 401 (37), 369 (100), 323
(6); HRMS Calc. for C25H36O8SiNa [M+Na]: 515.2077. Found:
515.2099.
2
3
3JHH = 9.6, 10.8 Hz, SiCH), 1.46 (dd, 1H, JHH = 3 Hz, JHH = 10.8 Hz,
2
3
SiCHCHAHB), 1.61(dd, 1H, JHH = 3 Hz, JHH = 9.6 Hz, SiCHCHAHB);
3
(recognizable peaks for 6c) d 0.44 (dd, 1H, JHH = 11.6, 14.6 Hz,
SiCH), 1.96–2.12 (m, 1H, SiCHCHAHB); EIGCMS (column: WCOT
Fused Silica, CP-SIL-5-CB, 50 m  0.25 mm/0.39 mm, 0.25
lm; car-
rier: helium 1 mL/min; temp: 60 °C–2 min–10 °C/min–300 °C): tR
12.91 min (3c) (66%); tR 13.66 min (6c) (31%); m/z for 3c (relative
intensity): 363 (100, MÀt-BuO), 360 (71), 335 (11), 307 (13), 279
(23), 247 (11), 233 (39), 219 (24), 189 (18), 173 (14), 161 (12),
140 (12), 139 (88); m/z for 6c (relative intensity): 450 (2, M+),
393 (6), 377 (8), 349 (5), 293 (4), 251 (5), 195 (15), 140 (13), 139
(100), 108 (4).
References
[1] E.W. Colvin, Silicon Reagents in Organic Synthesis, Academic Press, London,
1988.
[2] E.W. Colvin, Silicon Reagents in Organic Synthesis, Butterworth, London, 1981.
[3] T.W. Greene, P.M.G. Wuts, Protective Groups in Organic Synthesis, second ed.,
Wiley, Interscience, 1990.
[4] M. Bols, T. Skrydstrup, Chem. Rev. 95 (1995) 253–1277.
[5] L. Fensterbank, M. Malacria, S.McN. Sieburth, Synthesis (1997) 813–854.
[6] D.R. Gauthier, K.S. Zandi, K.J. Shea, Tetrahedron 54 (1998) 2289–2338.
[7] I. Fleming, Chemtract-Org. Chem. 9 (1996) 1–64.
4.8. Reaction of 2d with 2.5 equiv. of 5 using lithium tert-butoxide as
base
[8] K. Tamao, N. Ishida, Y. Ito, M. Kumada, Org. Synth. 69 (1990) 96–105.
[9] I. Fleming, J. Dunogues, R. Smithers, Org. React. (1989) (Chapter 2).
[10] S.N. Ushakov, A.M. Itenberg, Zh. Obshch. Khim. 7 (1937) 2495 [Chem. Abstr. 32
(1938) 2083(8)].
[11] L.H. Sommer, D.L. Bailey, G.M. Goldberg, C.E. Buck, T.S. Bye, F.J. Evans, F.C.
Whitmore, J. Am. Chem. Soc. 76 (1954) 1613–1618.
Following the procedure described for the reaction of 2a with
ylide 5, trimethylsulfoxonium iodide (550 mg, 2.5 mmol), t-BuOH
(0.26 mL, 2.7 mmol), n-BuLi (1.7 mL, 1.5 M solution in hexane,
2.5 mmol) and 2d (278 mg, 1 mmol, 1 equiv.) gave diethyl
2-(3-methoxyphenyl) cyclopropane-1, 1-dicarboxylate 3d [98]
(210 mg, 72%). Rf = 0.44 (hexane/EtOAc, 9:1); IR (film, cmÀ1):
2981, 2938, 2837, 1725, 1603, 1585, 1491, 1465, 1371, 1280,
1208, 1131, 1032, 991, 862; 1H NMR (200 MHz, CDCl3): d 0.87 (t,
[12] J.M. White, Aust. J. Chem. 48 (1995) 1227–1251.
[13] P.D. Magnus, T.K. Sarkar, S. Djuric, in: G. Wilkinson, F.G.A. Stone, E.W. Abell
(Eds.), Comprehensive Organometallic Chemistry, Pergamon Press, 1981
(Chapter 48).
[14] J.B. Lambert, Tetrahedron 46 (1990) 2677–2689.
3
3
3H, JHH = 7 Hz, OCH2CH3), 1.26 (t, 3H, JHH = 7 Hz, OCH2CH3), 1.65
[15] D. Habich, F. Effenherger, Synthesis (1979) 841–876.
[16] P.F. Hudrlik, A.M. Hudrlik, T. Yimenu, M.A. Waugh, G. Nagendrappa,
Tetrahedron 44 (1988) 3791–3809.
[17] T.K. Sarkar, B.K. Ghorai, J. Chem. Soc., Chem. Commun. (1992) 1184–1185.
[18] H. Nishiyama, K. Sakuta, N. Osaka, H. Arai, M. Matsumoto, K. Itoh, Tetrahedron
44 (1988) 2413–2426.
[19] P.F. Hudrlik, M.A. Waugh, A.M. Hudrlik, J. Organomet. Chem. 271 (1984) 69–
76.
[20] R. Verma, S.K. Ghosh, J. Chem. Soc., Perkin Trans. I (1998) 2377–2381.
[21] J. R Hwu, B.A. Gilbert, L.C. Lin, B.R. Liaw, J. Chem. Soc., Chem. Commun. (1990)
161–163.
2
3
(dd, 1H, JHH = 5.2 Hz, JHH = 9.4 Hz, CHAHB), 2.11 (dd, 1H,
2JHH = 5.2 Hz, JHH = 8 Hz, CHAHB), 3.16 (dd, 1H, JHH = 8.6, 8.6 Hz,
ArCH), 3.74 (s, 3H, ArOMe), 3.84 (q, 2H, JHH = 7 Hz, OCH2CH3),
3
3
3
4.14–4.29 (m, 2H, OCH2CH3), 6.72–6.77 (m, 3H, Ar), 7.10–7.18
(m, 1H, Ar); 13C NMR (50 MHz, CDCl3): d 13.58, 13.95, 18.76,
32.00, 37.30, 55.05, 61.01, 61.57, 112.96, 114.03, 120.69, 128.97,
136.19, 159.31, 166.48, 169.73.
[22] J.R. Hwu, B.-L. Chen, L.W. Huang, T.-H. Yang, J. Chem. Soc., Chem. Commun.
(1995) 299–300.
4.9. Reaction of 2a with 0.5 equiv. of 5 using lithium tert-butoxide as
base
[23] S. Thorimbert, M. Malacria, Tetrahedron Lett. 37 (1996) 8483–8486.
[24] S.E. Denmark, M.A. Wallace, C.B. Walker, J. Org. Chem. 55 (1990) 5543–5545.
[25] K.-T. Kang, S.S. Kim, J.C. Lee, S.U. Jong, Tetrahedron Lett. 33 (1992) 3495–3498.
[26] H. Nishiyama, M. Matsumoto, H. Arai, H. Sakaguchi, K. Itoh, Tetrahedron Lett.
27 (1986) 1599.
[27] I. Fleming, S.K. Ghosh, J. Chem. Soc., Chem. Commun. (1992) 1777–1779.
[28] I. Fleming, S.K. Ghosh, J. Chem. Soc., Chem. Commun. (1994) 2285–2286.
[29] D.J. Peterson, J. Org. Chem. 33 (1968) 780–784.
[30] W.P. Weber, Silicon Reagents for Organic Synthesis, Springer-Verlag, 1983.
[31] M.A. Brook, Silicon in Organic, Organometallic, and Polymer Chemistry, John
Wiley and Sons, Inc., New York, 2000.
[32] A.G. Brook, A.R. Bassindale, in: P. de Mayo (Ed.), Rearrangements in Ground
and Excited States, Academic Press, New York, 1980, pp. 149–221.
[33] A.G. Brook, Acc. Chem. Res. 7 (1974) 77–84.
[34] T. Hiyama, E. Shirakawa, Top. Curr. Chem. 219 (2002) 61–88.
[35] S.E. Denmark, R.F. Sweis, Chem. Pharm. Bull. 50 (2002) 1531–1541.
[36] S.E. Denmark, R.F. Sweis, Acc. Chem. Res. 35 (2002) 835–846.
[37] R.J.P. Corriu, J. Organomet. Chem. 653 (2002) 20–22.
[38] K. Tamao, K. Sumitani, M. Kumada, J. Am. Chem. Soc. 94 (1972) 4374–4376.
[39] E.J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 87 (1965) 1353–1364.
[40] D.M. Hodgson, M.J. Fleming, S.J. Stanway, Org. Lett. 7 (2005) 3295–3298.
[41] J. Aubé, in: B.M. Trost, I. Fleming (Eds.), Comprehensive Organic Synthesis:
Selectivity, Strategy, and Efficiency in Modern Synthetic Chemistry, vol. 1,
Pergamon, Oxford, 1991, pp. 822–825.
Dry t-BuOH (0.1 mL, 1 mmol) was added dropwise to n-BuLi
(0.67 mL, 1.5 M solution in hexane, 1 mmol) under argon atmo-
sphere. The solvent was removed under vacuum and the residue
was dissolved in dry N-methyl pyrrolidone (1 mL). The solution
was cooled to 20 °C and solid trimethylsulfoxonium iodide
(110 mg, 0.5 mmol) was added into it. After 20 minutes, this ylide
solution was added dropwise to neat 2a (306 mg, 1 mmol) over
15 min at 5 °C under argon atmosphere. The reaction mixture
was allowed to attain to room temperature and stirred for
20 min, diluted with water (30 mL) and extracted with 10% ethyl
acetate in hexane (3 Â 30 mL). The combined extract was washed
with brine, dried over anhydrous magnesium sulfate and concen-
trated under reduced pressure. The residue was purified by column
chromatography on silica using hexane/EtOAc (96/4) to give the
pure allylsilane 8a (10 mg, 4%) and homoallylsilane 9a (155 mg,
63%). A small amount of a mixture of cyclopropane 3a and cyclobu-
tane 6a (36 mg, 11%) was also isolated. Compound 8a: Rf = 0.34
(hexane/EtOAc, 95:5); 1H NMR (200 MHz, CDCl3): d 0.32 (s, 6H,
2 Â SiMe3), 1.12–1.29 (m, 12 H, 4 Â OCH2CH3), 2.60 (t, 1H,
[42] A.-H. Li, L.-X. Dai, V.K. Aggarwal, Chem. Rev. 97 (1997) 2341–2372.
[43] Y.G. Gololobov, A.N. Nesmeyanov, V.P. Lysenko, I.E. Boldeskul, Tetrahedron 43
(1987) 2609–2651.
3
3JHH = 9.4 Hz, SiCH), 3.42 (d,1H, JHH = 8.6 Hz, CH(CO2Et)2), 3.88–
[44] C. Bermand, A. Comel, G. Kirsch, ARKIVOC (2000) 128–132.
[45] S.K. Ghosh, R. Singh, S.M. Date, Chem. Commun. (2003) 636–637.
[46] S.M. Date, R. Singh, S.K. Ghosh, Org. Biomol. Chem. 3 (2005) 3369–3378.
[47] S.K. Ghosh, R. Singh, G.C. Singh, Eur. J. Org. Chem. (2004) 4141–4147.
[48] R. Singh, G.C. Singh, S.K. Ghosh, Eur. J. Org. Chem. (2007) 5376–5385.
[49] R. Singh, G.C. Singh, S.K. Ghosh, Tetrahedron Lett. 46 (2005) 4719–4722.
[50] S.M. Date, S.K. Ghosh, Bull. Chem. Soc. Jpn. 77 (2004) 2099–2100.
[51] S.M. Date, S.K. Ghosh, Angew. Chem., Int. Ed. 46 (2007) 386–388.
[52] R. Chowdhuri, S.K. Ghosh, Eur. J. Org. Chem. (2008) 3868–3874.
[53] R. Singh, S.K. Ghosh, Org. Lett. 9 (2007) 5071–5074.
3
4.22 (m, 9H, 4 Â OCH2CH3, CH(CO2Et)2), 5.54 (dd, 1 H, JHH = 8.6,
3
15.4 Hz, CH@CH), 5.72 (dd, 1H, JHH = 15.4, 10 Hz, CH@CH), 7.32–
7.49 (m, 5H, Ar). Compound 9a: Rf = 0.34 (hexane/EtOAc, 95:5);
IR (film, cmÀ1): 3070, 2982, 2938, 2906, 1725, 1644, 1446, 1371,
1254, 1153, 1111, 1028, 836, 817, 777, 737; 1H NMR (200 MHz,
CDCl3): d 0.33 (s, 3H, SiMe3), 0.36 (s, 3H, SiMe3), 1.17–1.32
(m, 12H, 4 Â OCH2CH3), 1.88–1.98 (m, 1H, SiCH), 2.50–2.60 (m,
[54] L. Alcaraz, J.J. Harnett, C. Mioskowski, JP. Martel, T. Le Gall, D.-S. Shin, J.R. Falck,
Tetrahedron Lett. 35 (1994) 5449–5452.
[55] L. Alcaraz, A. Cridland, E. Kinchin, Org. Lett. 3 (2001) 4051–4053.
3
2H, C@CHCH2), 3.43 (d, 1H, JHH = 5.2 Hz, CH(CO2Et)2), 4.02–4.28
3
(m, 8H, 4 Â OCH2CH3), 6.84 (t, 1H, JHH = 7.6 Hz, C@CH), 7.33–