170
Vol. 59, No. 2
confirmed by electronic spectroscopic and magnetic meas-
urements data. ESR spectroscopic measurements were moni-
tored to explain the covalent nature of the complexes synthe-
sized. These complexes were found to be effective antibacter-
ial agents than commercial streptomycin and ampicillin
drugs. However, the method of action of these compounds is
unknown. We assumed yet the potent activity of ligands and
their complexes is may be due to the presence of indole and
imidazole moieties in them.
Acknowledgment The authors thank the University Grant Commission
(UGC, F. No. 34-363/2008(SR)), New Delhi, India, and National Science
Coouncil (NSC), Taiwan, for financially supporting this research.
References
1) Gudasi K. B., Shenoy R. V., Vadavi R. S., Patil M. S., Patil S. A.,
Chem. Pharm. Bull., 53, 1077—1082 (2005).
2) Nawaz H., Akhter Z., Yameen S., Siddiqi H. M., Mirza B., Rifat A., J.
Organomet. Chem., 694, 2198—2203 (2009).
3) Wang Q., Wang Y., Yang Z., Chem. Pharm. Bull., 56, 1018—1021
(2008).
Fig. 1. Comparison of MIC Values (in mg/ml) of Schiff Bases, Metal
Complexes and Standard Drugs against Different Bacteria
4) Li Y., Yang Z., Li T., Chem. Pharm. Bull., 56, 1528—1534 (2008).
5) Rahaman Sk. H., Chowdhury H., Bose D., Ghosh R., Hung C. H.,
Ghosh B. K., Polyhedron, 24, 1755—1763 (2005).
6) Roy G. B., Inorg. Chim. Acta, 362 1709—1714 (2009).
7) Taylor M. K., Reglinski J., Wallace D., Polyhedron, 23, 3201—3209
(2004).
8) Sinha D., Tiwari A. K., Singh S., Shukla G., Mishra P., Chandra H.,
Mishra A. K., Eur. J. Med. Chem., 43, 160—165 (2008).
9) Gupta K. C., Sutar A. K., Coordin. Chem. Rev., 252, 1420—1450
(2008).
10) Rakesh G., Sreenivasulu B., Vittal J. J., Coordin. Chem. Rev., 252,
1027—1050 (2008).
11) Khuhawar M. Y., Mughal M. A., Channar A. H., Eur. Polym. J., 40,
805—809 (2004).
12) Mahon M. F., McGinley J., Rooney A. D., Walsh J. M. D., Inorg.
Chim. Acta, 362, 2353—2360 (2009).
13) Habibi M. H., Montazerozohori M., Lalegani A., Harrington R. W.,
Clegg W., J. Fluorine Chem., 127, 769—773 (2006).
14) Mukherjee P., Biswas C., Drew M. G. B., Ghosh A., Polyhedron, 26,
3121—3128 (2007).
15) Wen L. L., Zou Y., Chun L. N., Zhao P. N., Yi Z. L., Yuan G. Y., Qing
J. M., Polyhedron, 23, 849—855 (2004).
16) Karaoglu K., Baran T., Serbest K., Er M., Degirmencioglu I., J. Mol.
Struct., 922, 39—45 (2009).
17) Chohan Z. H., Arif M., Sarfraz M., Appl. Organometal. Chem., 21,
294—302 (2007).
18) Sharma R. K., Reddy R. P., Tegge W., Jain R., J. Med. Chem., 52,
7421—7431 (2009).
19) Reddy P. M., Prasad A. V. S. S., Shanker K., Ravinder V., Spectrochim.
Acta A, 68, 1000—1006 (2007).
20) Reddy P. M., Prasad A. V. S. S., Ravinder V., Transit. Met. Chem., 32,
507—513 (2007).
21) Reddy P. M., Prasad A. V. S. S., Rohini R., Ravinder V., Spectrochim.
Acta A, 70, 704—712 (2008).
22) Reddy P. M., Prasad A. V. S. S., Reddy Ch. K., Ravinder V., Transit.
Met. Chem., 33, 251—258 (2008).
* 1, 2ꢂligands, 3—10ꢂmetal complexes, 11, 12ꢂstandard drugs (see Table 4).
the diameter of the inhibition zone at the end of 24 h for bac-
teria. The metal complexes showed more increased activity
than corresponding ligands and ligand free metal salts. The
minimum inhibitory concentrations (MIC) of all these com-
plexes were also verified by the liquid dilution method in
which the effectiveness was observed at lower concentra-
tions.37—43) The comparison of the MICs (in mg/ml) of all
complexes and standard drugs against tested strains are pre-
sented in Fig. 1. It was found that Co(II), Ni(II), Cu(II) com-
plexes have good activity against all bacterial strains with
MIC value (10—22.5 mg/ml). In particular, Pd(II) complexes
showed excellent activity (MIC range 2.5—12.5 mg/ml)
against all the bacterial strains even than standard drugs
streptomycin and ampicillin. The antibacterial activity of lig-
ands and their complexes is due to the presence of indole and
imidazole moieties in them. Furthermore results from these
studies have also shown that complexation of metals to
CEIMAP or CIMPAP ligands serves to improve the antimi-
crobial of the ligands (results from Table 4). This higher anti-
bacterial activity of the metal complexes compared to ligands
is may be due to the change in structure due to coordination
and chelating tends to make metal complexes act as more
powerful and potent bactereostatic agents, thus inhibiting the
growth of the bacteria. Furthermore, chelation reduces the
polarity of the metal ion mainly due to the partial sharing of
its positive charge with the donor groups within the chelate
ring system. Such chelation increases the lipophilic nature of
the central metal atom, which favors its permeation more ef-
ficiently through the lipid layer of the microorganism, thus
destroying them more forcefully.23,44)
23) Shanker K., Rohini R., Ravinder V., Reddy P. M., Ho Y. P., Spec-
trochim. Acta A, 73, 205—211 (2009).
24) Reddy P. M., Ho Y. P., Shanker K., Rohini R., Ravinder V., Eur. J. Med.
Chem., 44, 2621—2625 (2009).
25) Shanker K., Reddy P. M., Rohini R., Ho Y. P., Ravinder V., J. Coord.
Chem., 62, 3040—3049 (2009).
26) Shanker K., Rohini R., Shravankumar K., Reddy P. M., Ho Y. P.,
Ravinder V., J. Indian Chem. Soc., 86, 153—161 (2009).
27) Prasad A. V. S. S., Reddy P. M., Shanker K., Rohini R., Ravinder V.,
Color. Technol., 125, 284—287 (2009).
Conclusion
The combination of o-phthalaldehyde and amino acids has
been used to develop some new tetradentate N2O2 Schiff base
ligands and consequently their metal complexes. The
tetradentate behavior i.e. involvement of both imino nitrogen
and carboxy oxygens of these Schiff bases was confirmed by
IR and NMR spectroscopic measurements. The octahedral
28) Shakir M., Azim Y., Chishti H. T. N., Parveen S., Spectrochim. Acta A,
65, 490—496 (2006).
29) Shakir M., Chishti H. T. N., Chingsubam P., Spectrochim. Acta A, 64,
512—517 (2006).
and squareplanar geometries of the complexes were further 30) Geary W. J., Coordin. Chem. Rev., 7, 81—113 (1971).