Antioxidative Potency of Various Carbohydrates
J. Agric. Food Chem., Vol. 57, No. 8, 2009 3107
(12) Benzie, I. F. F.; Strain, J. J. The ferric reducing ability of plasma
(FRAP) as a measure of “antioxidant power”: The FRAP assay.
Anal. Biochem. 1996, 239, 70–76.
(13) Robak, J.; Gryglewski, R. J. Flavonoids are scavenging or
scavengers of superoxide anions. Biochem. Pharmacol. 1988, 37,
837–841.
(14) Halliwell, B.; Gutteridge, J. M. C.; Aruoma, O. I. The deoxyribose
method: a simple “test-tube” assay for determination of rate
constants for reactions of hydroxyl radicals. Anal. Biochem. 1987,
165, 215–219.
of agaro-oligosaccharide may be an origin of the radical
scavenging activity.
The purpose of our present study was to elucidate the
functional groups necessary on carbohydrates to confer anti-
oxidative properties. We were not able to precisely determine
this in our present analyses, but our data do show that at least
one amino, carboxyl, carbonyl, or sulfonyl group is required,
but is not in itself sufficient, for carbohydrates to function as
antioxidants.
(15) Chen, H. M.; Zheng, L.; Lin, W.; Yan, X. J. Product monitoring
and quantitation of oligosaccharides composition in agar hydroly-
sate by precolumn labeling HPLC. Talanta 2004, 64, 773–777.
(16) Kogure, T.; Wakisaka, N.; Takaku, H.; Takagi, M. Efficient
production of 2-deoxy-scyllo-inosose from D-glucose by metaboli-
cally engineered recombinant Escherichia coli. J. Biotechnol.
2007, 129, 502–509.
ABBREVIATIONS USED
ASA, ascorbic acid; DMF, dimethylformamide; DOI, 2-deoxy-
scyllo-inosose; DPPH, 2-diphenyl-1-picrylhydrazyl; FRAP, fer-
ric reduction antioxidant power; SOD, superoxide dismutase;
TBA, thiobarbituric acid; TCA, trichloroacetic acid; TPTZ,
tripyridyl-s-triazine.
(17) Ordoudi, A. A.; Tsimidou, M. Z.; Vafiadis, A. P.; Bakalbassis,
E. G. Structure-DPPH radical scavenging activity relationships:
parallel study of catechol and guaiacol acid derivatives. J. Agric.
Food Chem. 2006, 54, 5763–5768.
(18) Ukeda, H.; Sarker, A. K.; Kawata, D.; Sawamura, M. Flow-
injection assay of superoxide dismutase based on the reduction
of highly water-soluble tetrazolium. Anal. Sci. 1999, 15, 353–
357.
LITERATURE CITED
(1) Dimitrios, B. Sources of natural phenolic antioxidants. Trends
Food Sci. Technol. 2006, 17, 505–512.
(2) Barnett, R. N.; Bongiorno, A.; Cleveland, C. L.; Joy, A.; Landman,
U.; Schster, G. B. Oxidative damage to DNA: counterion-assisted
addition of water to ionized DNA. J. Am. Chem. Soc. 2006, 128,
10795–10800.
(19) Ukeda, H.; Kawata, D.; Maeda, S.; Sawamura, M. Spectropho-
tometric assay for superoxide dismutase based on the reduction
of highly water-soluble tetrazolium salts by xanthine-xanthine
oxidase. Biosci., Biotechnol., Biochem. 1999, 63, 485–488.
(20) Matsuo, I.; Fujimoto, H.; Isomura, M.; Ajisaka, K. Chemoenzy-
matic synthesis of GalR1-3Gal, GalR1-3Galꢀ1-4GlcNAc, and their
PEG-conjugates. Bioorg. Med. Chem. Lett. 1997, 7, 255–258.
(21) Miyasato, M.; Ajisaka, K. Regioselectivity in ꢀ-galactosidase-
catalyzed transglycosylation for the enzymatic assembly of
D-galactosyl-D-mannose. Biosci., Biotechnol., Biochem. 2004, 68,
2086–2090.
(22) Ajisaka, K.; Fujimoto, H.; Miyasato, M. An R-fucosidase from
Penicillium multicolor as a candidate enzyme for the synthesis
of R-(1-3)-linked fucosyl oligosaccharides by transglycosylation.
Carbohydr. Res. 1998, 309, 125–129.
(23) Matsuo, I.; Isomura, M.; Miyazaki, T.; Sakakibara, T.; Ajisaka,
K. Chemoenzymatic synthesis of the branched oligosaccharides
which correspond to the core structure of N-linked sugar chains.
Carbohydr. Res. 1998, 305, 401–413.
(3) Xue, C.; Chen, L.; Li, Z.; Cai, Y.; Li, H.; Fang, Y. Antioxidative
activities of low molecular fucoidans from kelp Laminaria
japonica. In More Efficient Utilization of Fish and Fisheries
Products, Sakaguchi, M., Ed.; Elsevier Ltd: 2004; pp 139-145.
(4) Chen, H. M.; Yan, X. J. Antioxidant activities of agaro-
oligosaccharides with different degrees of polymerization in cell-
based system. Biochem. Biophys. Acta 2005, 1722, 103–111.
(5) Chen, H.; Zheng, L.; Yan, X. J. The preparation and bioactivity
research of agaro-oligosaccharides. Food Technol. Biotechnol.
2005, 43, 29–36.
(6) Campo, G. M.; Avenoso, A.; Campo, S.; Ascola, A. D’.; Ferlazzo,
A. M.; Calatrni, A. The antioxidant and antifibrogenic effects of
the glycosaminoglycans hyaluronic acid and chondroitin-4-sulfate
in a subchronic rat model of carbon tetrachloride-induced liver
fibrogenesis. Chem. Biol. Interact. 2004, 148, 125–138.
(7) Chen, A.-S.; Taguchi, T.; Sakai, K.; Kikuchi, K.; Wang, M.-W.;
Miwa, I. Antioxidant activities of N,N′-diacetylchitobiose and
chitotriose. Biol. Pharm. Bull. 2003, 26, 1326–1330.
(8) Xing, R.; Liu, S.; Guo, Z.; Yu, H.; Li, C.; Ji, X.; Feng, J.; Li, P.
The antioxidant activity of glucosamine hydrochloride in Vitro.
Bioorg. Med. Chem. 2006, 14, 1706–1709.
(9) Yan, Y.; Wan-Shun, L.; Bao-Qin, H.; Chang-Hong, W.; Chen-Wei,
F.; Bing, L.; Lie-Huan, C. The antioxidative and immunostimulating
properties of D-glucosamine. Int. Immunopharm. 2007, 7, 29–35.
(10) Yan, Y.; Wan-Shun, L.; Bao-Qin, H.; Hai-Zhou, S. Antioxidative
properties of a newly synthesized 2-glucosamine-thiazolidine-
4(R)-carboxylic acid (GlcNH2Cys) in mice. Nutr. Res. (N.Y.)
2006, 26, 369–377.
(24) Ruperez, P.; Ahrazem, O.; Leal, J. A. Potential antioxidant capacity
of sulfated polysaccharides from the edible marine brown seaweed
Fucus versiculosus. J. Agric. Food Chem. 2002, 50, 840–845.
(25) Takebayashi, J.; Tai, A.; Gohda, E.; Yamamoto, I. Characterization
of the radical-scavenging reaction of 2-O-substituted ascorbic acid
derivatives, AA-2G, AA-2P, and AA-2S: a kinetic and stoichio-
metric study. Biol. Pharm. Bull. 2006, 29, 766–771.
Received for review October 16, 2008. Revised manuscript received
February 19, 2009. Accepted February 23, 2009.
(11) Frankel, E. N.; Meyer, A. S. The problems of using one-
dimensional methods to evaluate multifunctional food and biologi-
cal antioxidants. J. Sci. Food Agric. 2000, 80, 1925–1941.
JF804020U