Abstracts
1
4
[
inhibitor with an excellent HSD1/HSD2 selectivity, outstanding PK profile, low clearance, long half life and very high oral
C]-labeled 7c was a radio-tracer of the HSD1 inhibitor 1, which later was identified as a very potent human HSD1 (h-HSD1)
1
bioavailability. Details of those studies will be published in due course.
This methodology for preparation of C-labeled triazoles is a general one. It is known that a wide variety of pharmaceutical
products have the triazole functionality and a great deal of molecules with a triazole display biological activity such as
4
1
4
17
1
7a
17b
17c
14
A good method for the preparation of C-labeled triazoles could help to
antibacterial,
antitumor
and antiviral agents.
conduct much needed drug metabolism studies in a timely manner.
1
In conclusion, a novel and convenient synthesis of C-labeled tetrazoles and triazoles has been developed. We utilized this
4
1
method in the preparation of a C-labeled HSD1 inhibitor tracer 7c.
4
Acknowledgements: The authors wish to thank Mr. Steven J. Staskiewicz for analytical support. J.Z.H. gratefully acknowledges Dr.
Lee J. Silverberg for help in the preparation of this manuscript.
References
[
1] Recent reviews on HSD1 see: (a) M. Causevic, M. Mohaupt, Molecular Aspects of Medicine 2007, 28(2), 220–6; (b) M. Wang,
Current Opinion in Investigational Drugs 2006, 7(4), 319–323; (c) M. C. Holmes, J. R. Seckl, Molecular and Cellular endocrinology
2006, 248(1–2), 9–14.
[
2] (a) J. P. Monson, Clinical Endocrinology (Oxford) 1998, 49(3), 281–282. (b) J. Tourniaire, M. G. Daumont, Annales de
l’Anesthesiologie Francaise 1976, 17(4), 406–10.
[
3] (a) P. H. J. van der Voort, R. T. Gerritsen, A. J. Bakker, E. C. Boerma, M. A. Kuiper, l. Heide, Inten. Care Med. 2003, 29(12),
2
4] K. K. Mishra, H. P. Pandey, R. H. Singh, Ind. J. Clin. Biochem. 2007, 22(2), 41–43.
5] J. P. F. Chin-Dusting, B. A. Ahlers, D. M. Kaye, J. J. Kelly, A. Whitworth, Hypertension 2003, 41(6), 1336–1340.
6] P. J. Hornnes, C. Kuhl, Diabete Metabol. 1984, 10(1), 1–6.
7] K. Yamaguchi, N. Nakamura, H. Uzawa J. Clin. Endocrin. Metabol. 1984, 58(5), 786–9.
8] G. B. Phillips, C. H. Tuck, T. Y. Jing, B. Boden-Albala, I. F. Lin, N. Dahodwala, R. L. Sacco Diabetes Care 2000, 23(1), 74–9.
9] R. Rosmond, G. Holm, P. Bjorntorp, Int. J. Obes. Metabol. Disorders: J. Int. Ass. Study Obes. 2000, 24(4), 416–22.
199–203; (b) A. Hautanen, H. Adlercreutz, J. Int. Med. 1993, 234(5), 461–9.
[
[
[
[
[
[
[
[
[
10] G. Gueder, J. Bauersachs, S. Frantz, D. Weismann, B. Allolio, G. Ertl, C. E. Angermann, S Stoerk, Circulation 2007, 115(13),1754–1761.
11] A. Steptoe, S. R. Kunz-Ebrecht, L. Brydon, J. Wardle, Int. J. Obes. 2004, 28(9), 1168–1173.
12] D. A. Ehrmann, D. Breda, M. C. Corcoran, M. K. Cavaghan, J. Imperial, G. Toffolo, C. Cobelli, K. S. Polonsky, Am. J. Physio.
Endocrino. Metabol. 2004, 287(2), E241–6.
[
[
13] D. Sousa, R. A. Peixoto, S. Turban, J. H. Battle, K. E. Chapman, J. R. Seckl, N. M. Morton. Endocrinology 2008, 149(4), 1861–1868.
14] (a) X. Gu, J. Dragovic, K. G. C. Jasminka, S. L. Koprak, C. LeGrand, S. S. Mundt, K. Shah, S. Kashmira, M. S. Springer, E. Y. Tan,
R. Thieringer, A. Hermanowski-Vosatka, H. J. Zokian, J. M. Balkovec, S. T. Waddell, Bioorg. Med. Chem. Lett. 2005, 15(23),
5
266–5269; (b) J. M. Balkovec, R. Thieringer, S. S. Mundt, A. Hermanowski-Vosatka, G. F. Patel, S. D. Aster, S. T. Waddell,
S. H. Olson, M. Maletic, PCT Int. Appl. WO 2003065983 A2 20030814 2003; (c) N. J. Kevin, X. Gu, S. T. Waddell, PCT Int. Appl. WO
007087150 A2 20070802 2007; (d) S. T. Waddell, J. M. Balkovec, N. J. Kevin, X. Gu, PCT Int. Appl. WO 2007047625 A2 20070426
007; (e) L. J. Mitnaul, J. Tian, C. Burton, M. H. Lam, Y. Zhu, S. H. Olson, J. E. Schneeweis, P. Zuck, S. Pandit, M. Anderson,
2
2
M. Maletic, S. T. Waddell, S. D. Wright, C. P. Sparrow, E. G. Lund. J. Lipid Res. 2007, 48(2), 472–482.
[
[
[
15] C. S. Elmore, D. C. Dean, T. M. Marks, M. P. Braun, N. X. Yu, Y. Zhang, C. E. Raab, R. Singh, L. Jin, D. G. Melillo, C. J. Dinsmore,
T. M. Williams, Abs. Papers 224th ACS National Meeting, Boston, MA, USA, August 18–22, 2002, MEDI-132.
16] T. Yoshioka, M. Kitagawa, M. Oki, S. Kubo, H. Tagawa, K. Ueno, W. Tsukada, M. Tsubokawa, A. Kasahara, J. Med. Chem. 1978,
2
1(7), 633–9.
17] (a) P. D. Cook, G. Wang, T. W. Bruice, V. Rajappan, K. Sakthivel, K. D. Tucker, J. L. Brooks, J. M. Leeds, M. E. Ariza, P. C. Fagan,
PCT Int. Appl. WO 2003073989 A2 20030912 (2003); (b) R. S. Varma, J. Ind. Chem. Soc. 2004, 81(8), 627–638; (c) S. M. Rida,
S. A. M. El-Hawash, H. T. Y. Fahmy, A. A. Hazzaa, M. M. M. El-Meligy. Arch. Pharm. Res. 2006, 29(10), 826–833.
EFFORTS ON THE SYNTHESIS OF TRITIUM LABELED PEG-PEPTIDE TRACERS
JONATHAN Z. HO, ANDY S. ZHANG, YUI S. TANG, STEVEN J. STASKIEWICZ, AND MATTHEW P. BRAUN
Department of Process Research, Merck Research Laboratories, Merck & Co., Inc., RY800-B375, 126 East Lincoln Avenue, Rahway, New Jersey, USA
Abstract: PEG-peptides refer to polyethylene glycol (PEG) peptides. PEGylation is a commonly used strategy to improve the
pharmacokinetics and metabolic stability of bioactive peptides intended for therapeutic use. The synthesis and purification of
tritium labeled PEG-peptide tracers are discussed.
3
3
Key words: H-labeled synthesis; H-labeled PEG-peptide; Oxyntomodulin.
1
Introduction: It is of a great deal of interest in developing biomimetic polymers that control interactions of a biological system.
This issue is particularly important in designing polymers, such as polyethylene glycol peptides (PEG-peptides), for drug targeting or
J. Label Compd. Radiopharm 2010, 53 406–489
Copyright r 2010 John Wiley & Sons, Ltd.
www.jlcr.org