4. For a selected review, see: Panek, M.; Masse, C. E. Chem. Rev. 1995,
95, 1293-1316.
17. Evans, D. A.; Takacs, J. M. Tetrahedron Lett. 1980, 21, 4233-4236.
5. (a) Zhang, Y. Z.; Zhu, F. Z.; Wang, L. X.; Zhou, Q. L. Angew. Chem. Int.
Ed. 2008, 47, 8496-8498; (b) Yasutomi, Y.; Suematsu, Y.; Katsuki, T. J.
Am. Chem. Soc. 2010, 132, 4510-4511; (c) Sambasivan, R.; Ball, Z. T. J.
Am. Chem. Soc. 2010, 132, 9289-9291; (d) Chen, D.; Zhu, D. X.; Xu, M.
H. J. Am. Chem. Soc. 2016, 138, 1498-1501.
6. (a) Gilday, J. P.; Gallucci, J. C.; Paquette, L. A. J. Org. Chem. 1989, 54,
1399-1408; (b) Paquette, L. A.; Gilday, J. P.; Ra, C. S. Hoppe, M. J.
Org. Chem. 1988, 53, 704-706.
7. (a) Sonnet, P. E.; Heath, R. R. J. Org. Chem. 1980, 45, 3137-3139; (b)
Ito, Y.; Katsuki, T.; Yamaguchi, M. Tetrahedron Lett. 1984, 25, 6015-
6016; (c) Moon, H. S.; Eisenberg, S. W. E.; Wilson, M. E.; Schore, N.
E.; Kurth, M. J. J. Org. Chem. 1994, 59, 6504-6505; (d) Price, M. D.;
Kurth, M. J.; Schore, N. E. J. Org. Chem. 2002, 67, 7769-7773.
8. (a) Coggins, P.; Simpkins; N. S. Synlett . 1992, 313–314; (b) Enders, D.;
Teschner, P.; Raabe, G.; Runsink, J. Eur. J. Org. Chem. 2001, 4463-
4477; (c) Papadopoulos, K.; Young, D. W. Tetrahedron Letters 2002, 43,
3951–3955; (d) Bag, S. S.; Kundu, R.; Basak, K.; Slanina, Z. Org. Lett.
2009, 11, 5722-5725.
9. For the regioselectivity of silylation see: (a) Rathke, M. W.; Sullivan, D.
F. Synth. Commun. 1973, 3, 67-72; (b) Hudrlik, P. F.; Peterson, D.; Chou,
D. Synth. Commun. 1975, 5, 359-365; (c) Larson, G. L.; Fuentes, L. M. J.
Am. Chem. Soc. 1981, 103, 2418-2419; (d) Shtelman, A. V.; Becker, J.
Y. Tetrahedron Letters. 2008, 49, 3101-3103; (e) Holan, M.; Pohl, R.;
Císařová, I.; Jahn, U. Eur. J. Org. Chem. 2012, 18 3459–3475; (f)
Ermolovich, Y. V.; Zhabinskii, V. N.; Khripach, V. A. Steroids. 2013,
78, 683-692.
10. CCDC 1471145 [3a] contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge
11. Currently, we do not know the exact reason why the bulkier
Me3SiMe2SiCl shows higher α-silylation reactivity than smaller
Crystallographic
Data
Centre
via
a
Me3SiCl. Probably, the electronic property of the Si-Si bond plays one of
the important roles in this case. Previous studies have shown that the Si-
H
bond in R3SiH can be dramatically weakened by successive
substitution of the alkyl group with the silyl group, although the origin of
this effect is unclear (See references below). We assumed that the Si-Cl
bond in Me3SiMe2SiCl might be weakened by the similar effect,
rendering Me3SiMe2SiCl more reactive than Me3SiCl. In addition, due to
the Si-Si bond (≈ 2.39 Å) is longer than the Si-C bond (≈ 1.93 Å),
switching Me to Me3Si group may not increase the steric effect as much
as one expect. (a) Walsh, R. Acc. Chem. Res. 1981, 14, 246-252. (b)
West, R. Pure Appl. Chem. 1982, 54, 1041-1050. (c) Sakurai, H. Pure
Appl. Chem. 1987, 59, 1637-1946. (d) Kanabus-Kaminska, J. M.;
Hawari, J. A.; Griller, D.; Chatgilialoglu, C. J. Am. Chem. Soc. 1987,
109, 5267-5268. (e) Shimizu, M.; Oda, K.; Bando, T.; Hiyama, T. Chem.
Lett. 2006, 35, 1022-1023.
12. For selected references, see: (a) Luo, Q.; Wang, C.; Li, Y. X.; Ouyang,
K. B.; Gu, L; Uchiyama, M; Xi, Z. F. Chem. Sci. 2011, 2, 2271-2274; (b)
Li, H.; Liu, L. T.; Wang, Z. T.; Zhao, F.; Zhang, S. G.; Zhang, W. X.;
Xi, Z. F. Chem. Eur. J. 2011, 17, 7399-7403; (c) Groll, K.; Manolikakes,
S. M.; du Jourdin, X. M.; Jaric, M.; Bredihhin, A.; Karaghiosoff, K.;
Carell, T.; Knochel, P. Angew. Chem. Int. Ed. 2013, 52, 6776-6780; (d)
Cui, H. Y.; Zhang, J. Y.; Cui, C. M. Organometallics 2013, 32, 1-4; (e)
Werner, V.; Klatt, T.; Fujii, M.; Markiewicz, J.; Apeloig, Y.; Knochel, P.
Chem. Eur. J. 2014, 20, 8338-8342; (f) Bai, X. F.; Deng, W. H.; Xu, Z.;
Li, F. W.; Deng, Y.; Xia, C. G.; Xu, L.W. Chem. Asian J. 2014, 9, 1108-
1115; (g) Liu, Z. X.; Tan, H. C.; Fu, T. R.; Xia, Y.; Qiu, D.; Zhang, Y.;
Wang, J. B. J. Am. Chem. Soc. 2015, 137, 12800-12803.
13. (a) Liu, Z. J.; Lin, X. L.; Yang, N.; Su, Z. S.; Hu, C. W.; Xiao, P. H.; He,
Y. Y.; Song, Z. L. J. Am. Soc. Chem. 2016, 138, 1877-1883; (b) Li, L. J.;
Sun, X. W.; He, Y. Y.; Gao, L.; Song, Z. L. Chem. Commun 2015, 51,
14925-14928; (c) Wu, Y.; Li, L. J.; Li, H. Z.; Gao, L.; Xie, H. M.;
Zhang, Z. G.; Su, Z. S.; Hu, C. W.; Song, Z. L. Org. Lett. 2014, 16,
1880-1883; (d) Lin, X. L.; Ye, X. C.; Sun, X. W.; Zhang, Y. B.; Gao, L.;
Song, Z. L. Org. Lett. 2014, 16, 1084-1087; (e) Sun, X. W.; Lei, J.; Sun,
C. Z.; Song, Z. L.; Yan. L. J. Org. Lett. 2012, 14, 1094-1097; (f) Song,
Z. L.; Lei, Z; Lu, G.; Wu, X.; Li, L. J. Org. Lett. 2010, 12, 5299−5302.
14. One of the previous studies have shown that the lithium enolate of α-
silyl acetamide underwent O-silylation to form silyl enol ether, rather
than C-silylation to give geminal bis(silyl) amide. For a reference, see:
Urayama, S.; Inoue, S.; Sato, Y. J. Organomet. Chem. 1988, 354, 155–
160.
15. Trimethylstannylation of amides 2a with Me3SnCl showed similarly
inert reactivity.
16. Andersson, F.; Hedenström, E. Tetrahedron: Asymmetry 2004, 15,
2539–2545.