functionalized styrenyl dendrons in this work: a direct poly-
merization of a triferrocenyl dendron and a ferrocenylation of
a dendronized polymer using ‘‘click’’ chemistry.
3 K. T. Kim, J. Han, C. Y. Ryu, F. C. Sun, S. S. Sheiko,
M. A. Winnik and I. Manners, Macromolecules, 2006, 39,
7922–7930.
4 V. Percec, C.-H. Ahn, G. Ungar, D. J. P. Yeardley, M. Moller and
¨
S. S. Sheiko, Nature, 1998, 391, 161–164; S. A. Prokhorova,
S. S. Sheiko, M. Moller, C.-H. Ahn and V. Percec, Macromol.
¨
Rapid Commun., 1998, 19, 359–366; V. Percec, C.-H. Ahn,
W. D. Cho, A. M. Jamieson, J. Kim, T. Leman, M. Schmidt,
M. Grole, M. Moller, S. A. Prokhorova, S. S. Sheiko, S. Z.
¨
D. Cheng, A. Zhang, G. Ungar and D. J. P. Yearley, J. Am.
Chem. Soc., 1998, 120, 8619–8631; V. Percec and M. N.
Holcerca, Biomacromolecules, 2000, 1, 6–16; V. Percec,
J. G. Rudick, M. Peterca, M. Wagner, M. Obata,
C. M. Mitchell, W.-D. Cho, V. S. Balagurusamy and
P. A. Heiney, J. Am. Chem. Soc., 2005, 127, 15257–15264;
V. Percec, C. B. Won, M. Petrarca and P. A. Heiney, J. Am.
Chem. Soc., 2007, 129, 11265–11278.
The first route yielded a larger dendronized polymer than the
former. A possible explanation is that the chlorine atoms located
on the tris(chloromethylsilyl) dendrons could be responsible for
radical reactions terminating the chains, thus shortening the
polymer. The sizes and shapes of both materials have been
analyzed using a variety of physico-chemical techniques.
The polydispersities (from SEC) were found to be larger for
the directly polymerized ferrocenyl dendron (PDI = 1.9) than
for the ferrocenylized dendronic polymer (PDI = 1.2), which
is presumably due to their size difference.
DLS was an excellent technique to evaluate the size of these
dendronized polymers (diameter: 28 nm for 5 vs. 18.5 nm for
1
10), confirmed by DOSY H NMR in the case of the smaller
5 J. L. Mynar, T. L. Choi, M. Yoshida, V. Kim, C. J. Hawker and
J. M. J. Fre
M. Yoshida, J. M. J. Fre
Bioconjugate Chem., 2005, 16, 535–541; D. Astruc, C. R. Acad.
´
chet, Chem. Commun., 2005, 5169–5171; C. C. Lee,
´
chet, E. E. Dy and F. C. Szoda,
dendronized polymer 10), whereas AFM shows that they are
rather globular, i.e. the dendrons are not large enough to cause
a sufficient rigidity of the materials.
´
Sci., Ser. IIb, 1996, 322, 757–766.
6 I. Manners, Science, 2001, 294, 1664–1668; I. Manners, Synthetic
Metal-Containing Polymers, Wiley-VCH, Weinheim, 2004; Frontiers
in Transition Metal-Containing Polymers, ed. A. S. Abd-El-Aziz,
I. Manners, Wiley Interscience, John Wiley and Sons Inc.,
New York, 2007.
7 D. A. Foucher, B.-Z. Tang and I. Manners, J. Am. Chem. Soc.,
1992, 114, 6246–6248; M. Tanabe and I. Manners, J. Am. Chem.
Soc., 2004, 126, 11434–11435; M. Tanabe, G. W. Vandermeulen,
W. Y. Chan, P. W. Cyr, L. Vanderark, D. A. Rider and
I. Manners, Nat. Mater., 2006, 5, 467–470.
8 For a linear-dendritic polyferrocenyl derivative, see: C. Tao,
L. Wang, G. Jiang, J. Wang, X. Wang, J. Zhou and W. Wang,
Eur. Polym. J., 2006, 42, 687–693.
9 M.-H. Desbois, D. Astruc, J. Guillin, F. Varret, A. X. Trautwein
and G. Villeneuve, J. Am. Chem. Soc., 1989, 111, 5800–5809;
D. Astruc, Bull. Chem. Soc. Jpn., 2007, 80, 1658–1671;
D. Astruc, C. Ornelas and J. Ruiz, Acc. Chem. Res., 2008, 41,
841–856.
10 (a) V. Sartor, L. Djakovitch, J.-L. Fillaut, F. Moulines, F. Neveu,
V. Marvaud, J. Guittard, J.-C. Blais and D. Astruc, J. Am. Chem.
Soc., 1999, 121, 2929–2930; (b) S. Nlate, J. Ruiz, J.-C. Blais and
D. Astruc, Chem. Commun., 2000, 417–418; (c) J. Ruiz,
G. Lafuente, S. Marcen, C. Ornelas, S. Lazare, E. Cloutet,
J.-C. Blais and D. Astruc, J. Am. Chem. Soc., 2003, 125,
7250–7257; (d) M.-C. Daniel, J. Ruiz, J.-C. Blais, N. Daro and
D. Astruc, Chem.–Eur. J., 2003, 9, 4371–4379; (e) D. Astruc,
M.-C. Daniel and J. Ruiz, Chem. Commun., 2004, 2637–2649;
(f) C. Ornelas, J. Ruiz, E. Cloutet, S. Alves and D. Astruc, Angew.
Chem., Int. Ed., 2007, 46, 872–877.
AFM also shows the flattening of these materials on a mica
surface in the condensed state18 (height: 5 nm for 5 and 2.5 nm
for 10). The diameter found is not significantly different for 10
(22.5 nm) from that determined by DLS (18.5 nm), suggesting
that the dendronic polymeric units of 10 do not aggregate on
mica, whereas they do with the larger dendronized polymer 5
(100 nm width spots).
Both ferrocenyl dendronized polymers show a reversible
ferrocene oxidation wave (which indicates that the ferrocenyl
units are located at the periphery of the dendronized polymers)19
and form stable derivatized Pt electrodes. The Bard–Anson
equation can be used for 10 to determine the number of
ferrocenyl groups (153) given the absence of adsorption in
dichloromethane, but not for 5 due to adsorption.
Acknowledgements
Financial assistance from the Institut Universitaire de France
(IUF), the Agence Nationale de la Recherche (ANR) (project
no. ANR-06-NANO-026-02), the Universite Bordeaux 1 and
´
the Centre National de la Recherche Scientifique (CNRS) is
gratefully acknowledged.
11 K. H. Pannel and H. Sharma, Organometallics, 1991, 10, 954–958.
´
12 S. M. Grayson and J. M. J. Frechet, Chem. Rev., 2001, 101,
3819–3868.
13 A. Kowlczuk-Bleja, B. Trzebicka, B. Voit and A. Dworak,
Polymer, 2004, 45, 595–608.
14 For a review of ferrocenyl dendrimers and their electrochemical
properties, see: (a) C. M. Casado, I. Cuadrado, M. Moran,
B. Alonso, B. Garcia, B. Gonzales and B. Losada, J. Coord. Chem.
Rev., 1999, 185–186, 53–79; (b) for electrochemical studies of
multi-ferrocenyl oligomers and polymers, see: R. Rulkens,
A.-J. Lough, I. Manners, S. R. Lovelace, C. Grant and
W. E. Geiger, J. Am. Chem. Soc., 1996, 118, 12683–12695;
(c) N. Camine, U. T. Mueller-Westerhoff and W. E. Geiger,
J. Organomet. Chem., 2001, 637, 823–826.
References
1 A. D. Schluter, Top. Curr. Chem., 1998, 197, 165–191;
¨
A. D. Schluter and J. P. Rabe, Angew. Chem., Int. Ed., 2000, 39,
¨
865–883; A. D. Schluter, C. R. Chim., 2003, 6, 843–851.
¨
2 B. Karakaya, W. Claussen, K. Gessler, W. Saenger and
A. D. Schluter, J. Am. Chem. Soc., 1997, 119, 3296–3301;
R. Yin, Y. Zhu, D. A. Tomalia and H. Ibuki, J. Am. Chem.
Soc., 1998, 120, 2678–3301; H. Frey, Angew. Chem., Int. Ed., 1998,
¨
37, 2193–2197; A. D. Schluter and J. P. Rabe, Angew. Chem., Int.
15 (a) J. B. Flanagan, S. Margel, A. J. Bard and F. C. Anson, J. Am.
Chem. Soc., 1978, 100, 4248–4253; (b) A. J. Bard and
R. L. Faulkner, Electrochemical Methods, Wiley, New York,
2nd edn, 2001.
¨
Ed., 2000, 39, 1200–1205; P. R. L. Malenfant and J. M. J. Frechet,
´
Macromolecules, 2000, 33, 3634–3639; L. Shu, A. D. Schluter,
¨
C. Ecker, N. Severin and J. P. Rabe, Angew. Chem., Int. Ed., 2001,
40, 4666–4669; Z. M. Fresco, I. Suez, S. A. Backer and J. M.
´
16 J. Ruiz and D. Astruc, C. R. Acad. Sci., Ser. IIc: Chim, 1998, t.1,
J. Fre
´
L. Okrasa, T. Pakula and A. D. Schluter, J. Am. Chem. Soc., 2004,
¨
molecules, 2004, 37, 7491–7496; W. Li, A. Zhang and
chet, J. Am. Chem. Soc., 2004, 126, 8374–3301; A. Zhang,
¨
126, 6658–6666; A. Carlmark and E. E. Malmstrom, Macro-
21–27; J. Ruiz, M.-C. Daniel and D. Astruc, Can. J. Chem., 2006,
84, 288–299.
17 H. D. Abruna, in Electroresponsive Molecular and Polymer
Systems, ed. T. A. Stotheim, Dekker, New York, 1988, vol. 1,
p. 97; R. D. Murray, in Molecular Design of Electrode Surfaces.
A. D. Schluter, Macromolecules, 2008, 41, 43–49.
¨
ꢀc
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2009
252 | New J. Chem., 2009, 33, 246–253