S. Couty et al. / Tetrahedron 65 (2009) 1809–1832
1831
C.; Mun˜oz, M. P.; Jime´nez-Nu´ n˜ez, E.; Nevado, C.; Herrero-Go´mez, E.; Raducan,
M.; Echavarren, A. M. Chem.dEur. J. 2006, 12, 1677–1693; (f) Nieto-Oberhuber,
C.; Lo´ pez, S.; Mun˜oz, M. P.; Jime´nez-Nu´ n˜ez, E.; Bun˜uel, E.; Ca´rdenas, D. J.;
Echavarren, A. M. Chem.dEur. J. 2006, 12, 1694–1702; (g) Nieto-Oberhuber, C.;
Lo´ pez, S.; Jime´nez-Nu´ n˜ez, E.; Echavarren, A. M. Chem.dEur. J. 2006, 12, 5916–
5923; (h) Toullec, P. Y.; Genin, E.; Leseurre, L.; Geneˆt, J.-P.; Michelet, V. Angew.
Chem., Int. Ed. 2006, 45, 7427–7430; (i) Genin, E.; Leseurre, L.; Toullec, P. Y.;
Geneˆt, J.-P.; Michelet, V. Synlett 2007, 1780–1784; (j) Mamane, V.; Gress, T.;
Krause, H.; Fu¨rstner, A. J. Am. Chem. Soc. 2004, 126, 8654–8655; (k) Luzung, M.
R.; Markham, J. P.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 10858–10859; (l)
Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15978–15979; (m) Zhang,
L.; Kozmin, S. A. J. Am. Chem. Soc. 2005, 127, 6962–6963; (n) Zhang, L.; Kozmin,
S. A. J. Am. Chem. Soc. 2004, 126, 11806–11807; (o) Gagosz, F. Org. Lett. 2005, 7,
filtrate was evaporated under reduced pressure and the crude
material was dissolved in MeOH (5 mL). To the resulting solution at
0 ꢀC was added NaBH4 (92 mg, 2.4 mmol, 2 equiv). After 1 h at 0 ꢀC,
the reaction mixture was hydrolyzed with a saturated aqueous
solution of NH4Cl and MeOH was evaporated under reduced pres-
sure. The residue was extracted with EtOAc, the combined organic
extracts were dried over MgSO4, filtered, and concentrated under
reduced pressure. The crude material was purified by flash chro-
matography on silica gel (petroleum ether/EtOAc 50:50) to afford
297 mg (60%) of alcohol 74 as a yellow oil and as a 90:10 mixture of
diastereomers (C22H27NO4S, MW¼401.52 g molꢁ1). IR 3246, 1597,
´
4129–4132; (p) Mezailles, N.; Ricard, L.; Gagosz, F. Org. Lett. 2005, 7, 4133–4136;
(q) Marion, N.; De Fremont, P.; Lemie`re, G.; Stevens, E. D.; Fensterbank, L.;
Malacria, M.; Nolan, S. P. Chem. Commun. 2006, 2048–2050.
1494, 1453, 1336, 1160, 1088, 1038, 815, 736, 699, 672 cmꢁ1 1H
;
NMR (CDCl3) only the signals corresponding to the major dia-
stereomer could all be assigned unambiguously
7.82 (d, J¼8.4 Hz,
5. For reviews on gold-catalysis including not solely enyne cycloisomerizations,
see: (a) Dyker, G. Angew. Chem., Int. Ed. 2000, 39, 4237–4239; (b) Hashmi, A. S.
K. Gold Bull. 2003, 36, 3–9; (c) Hashmi, A. S. K. Gold Bull. 2004, 37, 51–65; (d)
Arcadi, A.; Di Giuseppe, S. Curr. Org. Chem. 2004, 8, 795–812; (e) Hoffmann-
Ro¨der, A.; Krause, N. Org. Biomol. Chem. 2005, 3, 387–391; (f) Hashmi, A. S. K.
Angew. Chem., Int. Ed. 2005, 44, 6990–6993; (g) Hashmi, A. S. K.; Hutchings, G. J.
Angew. Chem., Int. Ed. 2006, 45, 7896–7936; (h) Ma, S.; Yu, S.; Gu, Z. Angew.
d
2H), 7.50–7.40 (m, 7H), 4.75 (d, AB syst, J¼12.2 Hz, 1H), 4.65 (d, AB
syst, J¼12.2 Hz, 1H), 4.30–4.22 (m, 1H), 3.90 (apparent dt, J¼11.5,
4.5 Hz, 1H), 3.66 (dd, J¼9.3, 4.7 Hz, 1H), 3.60 (dd, apparent br d,
J¼10.5 Hz, 1H), 3.51 (dd, J¼9.3, 4.7 Hz, 1H), 3.03 (ddd, apparent dt,
J¼14.8, 3.7 Hz, 1H), 2.91 (dd, J¼10.5, 8.4 Hz, 1H), 2.57 (s, 3H), 2.38–
2.32 (m, 1H), 1.53 (dd, J¼8.9, 5.0 Hz, 1H), 1.42 (ddd, J¼14.8, 9.6,
5.0 Hz, 1H), 0.42 (dd, J¼8.9, 6.4 Hz, 1H), 0.00 (dd, J¼6.4, 5.0 Hz, 1H);
13C NMR (CDCl3) only the signals corresponding to the major dia-
´
´ ˜
Chem., Int. Ed. 2006, 45, 200–203; (i) Jimenez-Nunez, E.; Echavarren, A. M.
Chem. Commun. 2007, 336–346; (j) Fu¨rstner, A.; Davies, P. W. Angew. Chem., Int.
Ed. 2007, 46, 3410–3449; (k) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180–3211;
(l) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395–403; (m) Skouta, R.; Li, C.-J.
Tetrahedron 2008, 64, 4917–4938; (n) Muzart, J. Tetrahedron 2008, 64, 5815–
5849; (o) Shen, H. C. Tetrahedron 2008, 64, 3885–3903.
6. (a) Zificsak, C. A.; Mulder, J. A.; Hsung, R. P.; Rameshkumar, C.; Wei, L.-L. Tet-
rahedron 2001, 57, 7575–7606; (b) For a special issue devoted to the chemistry
of ynamides, see: Tetrahedron 2006, 62.
7. For recent references concerning the gold-catalyzed synthesis of oxazolones
from N-alkynylcarbamates, see: (a) Hashmi, A. S. K.; Salathe´, R.; Frey, W. Synlett
2007, 1763–1766; (b) Istrate, F. M.; Buzas, A. K.; Jurberg, I. D.; Odabachian, Y.;
Gagosz, F. Org. Lett. 2008, 10, 925–928.
8. (a) Marion, F.; Coulomb, J.; Courillon, C.; Fensterbank, L.; Malacria, M. Org. Lett.
2004, 6, 1509–1511; (b) Marion, F.; Coulomb, J.; Servais, A.; Courillon, C.; Fen-
sterbank, L.; Malacria, M. Tetrahedron 2006, 62, 3856–3871.
9. (a) Saito, N.; Sato, Y.; Mori, M. Org. Lett. 2002, 4, 803–805; (b) Mori, M.; Wa-
kamatsu, H.; Saito, N.; Sato, Y.; Narita, R.; Sato, Y.; Fujita, R. Tetrahedron 2006,
62, 3872–3881.
stereomer could all be assigned unambiguously
d 143.9 (s), 137.2 (s),
132.5 (s),129.4 (d, 2C),128.5 (2d, 4C),127.6 (d, 2C),127.4 (d), 73.5 (t),
72.1 (t), 59.6 (t), 51.6 (t), 45.7 (s), 37.9 (d), 36.7 (t), 25.6 (d), 21.5 (q),
12.0 (t); MS-EI m/z (relative intensity) 356 (Mꢁ(CH2)2OHþ, 1), 280
(MꢁBnOCHþ2 , 8), 247 (10), 246 (56), 155 (7), 140 (7), 125 (10), 124
(9), 108 (7), 92 (10), 91 (100), 65 (7); HRMS calcd for C22H28NO4S
(MþHþ): 402.1739, found: 402.1745.
Relevant NOESY correlations (500 MHz, CDCl3)
H
H
Ts
N
OH
H
H
10. For a preliminary communication, see: Couty, S.; Meyer, C.; Cossy, J. Angew.
Chem., Int. Ed. 2006, 45, 6726–6730.
H
H
H
11. (a) Wabnitz, T. C.; Yu, J.-Q.; Spencer, J. B. Chem.dEur. J. 2004, 10, 484–493; (b)
Lemie`re, G.; Gandon, V.; Agenet, N.; Goddard, J.-P.; De Kozak, A.; Aubert, C.;
Fensterbank, L.; Malacria, M. Angew. Chem., Int. Ed. 2006, 45, 7596–7599.
12. (a) Krow, G. R. Org. React. 1993, 43, 251–798; (b) Krow, G. R.; Johnson, C. A.;
Guare, J. P.; Kubrak, D.; Henz, K. J.; Shaw, D. A.; Szczepanski, S. W.; Carey, J. T.
J. Org. Chem. 1982, 47, 5239–5243.
13. (a) Lambert, J. B. Tetrahedron 1990, 8, 2677–2689; (b) Lambert, J. B.; Zhao, Y.;
Emblidge, R. W.; Salvador, L. A.; Liu, X.; So, J.-H.; Chelius, E. C. Acc. chem. Res.
1999, 32, 183–190.
H
H2 H1
BnO
68
The absence of scalar coupling between H1 and H2 (J3(H1–
H2)z0 Hz) confirmed the stereochemical assignment.46
14. The possibility that desilylation occurs prior to the cycloisomerization cannot
be completely excluded even if some N-(trimethylsilylalkynyl)amides seem to
be stable in the presence of AuCl.10
15. Marotta, E.; Righi, P.; Rosini, G. Org. Lett. 2000, 2, 4145–4148.
16. (a) Shioiri, T.; Ninomiya, K.; Yamada, S. J. Am. Chem. Soc. 1972, 94, 6203–
6205; (b) Ninomiya, K.; Shioiri, T.; Yamada, S. Tetrahedron 1974, 30, 2151–
2152.
Acknowledgements
We thank Johnson&Johnson for financial support (Focus Giving
Award to J.C.) as well as Dr. William V. Murray and Dr. Luc Van Hijfte
for stimulating discussions.
17. (a) Fleming, I.; Henning, R.; Parker, D. C.; Plaut, H. E.; Sanderson, P. E. J. J. Chem.
Soc., Perkin Trans. 1 1995, 317–337; (b) Jones, G. R.; Landais, Y. Tetrahedron 1996,
52, 7599–7662.
References and notes
18. Alkenyl iodide 23 was prepared by hydrozirconation of the THP ether derived
from but-3-yn-1-ol followed by iodinolysis, see: Yokomatsu, T.; Abe, H.; Sato,
M.; Suemune, K.; Kihara, T.; Soeda, S.; Shimeno, H.; Shibuya, S. Bioorg. Med.
Chem. 1998, 66, 2495–2505.
19. (a) Maifeld, S. V.; Tran, M. N.; Lee, D. Tetrahedron Lett. 2005, 46, 105–108; (b)
Fragale, G.; Wirth, T. Eur. J. Org. Chem. 1998, 1361–1369.
20. Dener, J. M.; Hart, D. J. Tetrahedron 1988, 44, 7037–7046.
21. (a) Zweifel, G.; Lewis, W. J. Org. Chem. 1978, 43, 2739–2744; (b) On, H. P.; Lewis,
W.; Zweifel, G. Synthesis 1981, 999–1001.
22. Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem. Soc. 2003,
125, 11360–11370.
1. (a) Trost, B. M. Acc. Chem. Res. 1990, 23, 34–42; (b) Trost, B. M.; Chang, V. K.
Synthesis 1993, 824–832; (c) Trost, B. M.; Krische, M. J. Synlett 1998, 1–16; (d)
Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067–2096; (e)
Ojima, I.; Tzamarioudaki, M.; Li, Z. Y.; Donovan, R. J. Chem. Rev. 1996, 96, 635–
662; (f) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813–834; (g)
Lloyd-Jones, G. C. Org. Biomol. Chem. 2003, 1, 215–236; (h) Fairlamb, I. J. S.
Angew. Chem., Int. Ed. 2004, 43, 1048–1052; (i) Diver, S. T.; Giessert, A. J. Chem.
Rev. 2004, 104, 1317–1382; (j) Bruneau, C. Angew. Chem., Int. Ed. 2005, 44, 2328–
2334.
2. (a) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271–2296;
(b) An˜orbe, L.; Domı´nguez, G.; Pe´rez-Castells, J. Chem.dEur. J. 2004, 10,
4938–4943; (c) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431–
436; (d) Soriano, E.; Ballestros, P.; Marco-Contelles, J. Organometallics 2005,
24, 3172–3181.
23. Kitamura, T.; Kotani, M.; Fujiwara, Y. Synthesis 1998, 1416–1418.
24. (a) Witulski, B.; Stengel, T. Angew. Chem., Int. Ed. 1998, 37, 489–492; (b) Stang,
P. J. J. Org. Chem. 2003, 68, 2997–3008.
25. The so-called cationic gold complexes (Ph3P)Au(BF4)4a or (Ph3P)Au(NTf2)4o,p led
to similar results in terms of yield and diastereoselectivity.
3. For the most recent recent review on this topic, see: Michelet, V.; Toullec, P. Y.;
Geneˆt, J.-P. Angew. Chem., Int. Ed. 2008, 47, 4268–4315.
4. For selected references on the cycloisomerization of enynes, see: (a) Nevado, C.;
Ca´rdenas, D. J.; Echavarren, A. M. Chem.dEur. J. 2003, 9, 2627–2635; (b) Nieto-
26. The identity of the minor epimer was ascertained by epimerization of cyclo-
butanone 41 (K2CO3, MeOH, reflux), which led to
a 50:50 mixture of
diastereomers.
´
Oberhuber, C.; Mun˜oz, M. P.; Bun˜uel, E.; Nevado, C.; Cardenas, D. J.; Echavarren,
27. Witulski, B.; Go¨ßmann, M. Chem. Commun. 1999, 1879–1880.
28. The relative configuration of 46 has been indicated for the sake of clarity
but the actual sense of 1,2-stereochemical induction for 1,6-ene-ynamides
A. M. Angew. Chem., Int. Ed. 2004, 43, 2402–2406; (c) Nieto-Oberhuber, C.;
Lo´pez, S.; Mun˜oz, M. P.; Ca´rdenas, D. J.; Bun˜uel, E.; Nevado, C.; Echavarren, A. M.
´
Angew. Chem., Int. Ed. 2005, 44, 6146–6148; (d) Nieto-Oberhuber, C.; Lopez, S.;
substituted at the
b position of the nitrogen atom was only ascertained
Echavarren, A. M. J. Am. Chem. Soc. 2005, 127, 6178–6179; (e) Nieto-Oberhuber,