Qiu et al.
Scheme 1. Reactions of M(NMe2)n (n ) 4, M ) Zr, Hf; n )5, M )
Scheme 2. Reactions of O2 with an Equilibrium Mixture of d0
19-21
Ta) and 5 with O2
Tungsten Silyl Alkylidyne and Silyl Bis-alkylidene Complexes22,24k
Silyl amide (Me2N)4Ta-Si(SiMe3)3 (5) reacts with O2 to give
O2-stable (Me2N)3Ta(η2-ONMe2)[OSi(SiMe3)3] (6, Scheme
1).21 Oxygen insertion into the Ta-Si and one Ta-N bond
occurs in the reaction. We have also found that the reaction
of O2 with a mixture of d0 tungsten silyl alkylidyne and its
bis-alkylidene
tautomer
gives
(ButCH2)2W()O)-
[)CBut(SiButPh2)] where the silyl ligand has migrated to
the alkylidyne ligand (Scheme 2).22
In the current studies, (Me2N)4Ta-SiButPh2 (1), an
analogue of 5, was treated with O2. This reaction gives 2, 3,
and the oxo amide
4
containing two chelating
-N(Me)CH2NMe2 ligands (Scheme 3). 2 and 3 were also
prepared from the reactions of (Me2N)4TaCl (7) with
LiOSiButPh2 (8) and (Me2N)3TaCl2 (9) with 8 and LiONMe2,
respectively. The reaction between 2 and O2 gives 3 and 4
as well. Possible reaction pathways giving 2-4 are discussed.
1).20 These studies followed our earlier work in the inves-
tigation of the reactions of silyl complexes with O2.21-25
(4) (a) Labinger, J. A.; Hart, D. W.; Seibert, W. E.; Schwartz, J. J. Am.
Chem. Soc. 1975, 97, 3851. (b) Blackburn, T. F.; Labinger, J. A.;
Schwartz, J. Tetrahedron Lett. 1975, 16, 3041.
(5) (a) Lubben, T. V.; Wolczanski, P. T. J. Am. Chem. Soc. 1985, 107,
701. (b) Lubben, T. V.; Wolczanski, P. T. J. Am. Chem. Soc. 1987,
109, 424.
(6) Brindley, P. B.; Scotton, M. J. J. Chem. Soc., Perkin Trans. 1981,
419.
(7) Tilley, T. D. Organometallics 1985, 4, 1452.
(8) Wang, R.; Folting, K.; Huffman, J. C.; Chamberlain, L. R.; Rothwell,
I. P. Inorg. Chim. Acta 1986, 120, 81.
(17) (a) Miyazaki, S. J. Vac. Sci. Technol. 2001, B19, 2212. (b) Yu, J. J.;
Boyd, I. W. Phys. Status Solidi A 2006, 203, R9.
(18) (a) Robertson, J.; Chen, C. W. Appl. Phys. Lett. 1999, 74, 1168. (b)
Robertson, J. J. Vac. Sci. Technol. 2000, B18, 1785. (c) Robertson, J.
J. Non-Cryst. Solids 2002, 303, 94.
(19) Wang, R.-T.; Zhang, X.-H.; Chen, S.-J.; Yu, X.-H.; Wang, C.-S.;
Beach, D. B.; Wu, Y.-D.; Xue, Z.-L. J. Am. Chem. Soc. 2005, 127,
5204.
(9) Gibson, V. C.; Redshaw, C.; Walker, G. L. P.; Howard, J. A. K.;
Hoy, V. J.; Cole, J. M.; Kuzmina, L. G.; De Silva, D. S. J. Chem.
Soc., Dalton Trans. 1999, 161.
(10) Brindley, P. B.; Hodgson, J. C. J. Organomet. Chem. 1974, 65, 57.
(11) (a) Van Asselt, A.; Trimmer, M. S.; Healing, L. M.; Bercaw, J. E.
J. Am. Chem. Soc. 1988, 110, 8254. (b) Coughlin, E. B.; Bercaw,
J. E. Organometallics 1992, 11, 465.
(12) Gibson, T. Organometallics 1987, 6, 918.
(13) Kim, S.-J.; Jung, I. N.; Yoo, B. R.; Cho, S.; Ko, J.; Kim, S. H.; Kang,
S. O. Organometallics 2001, 20, 1501.
(14) (a) Wallace, R. M.; Wilk, G. D. Crit. ReV. Solid State Mater. Sci.
2003, 28, 231. (b) Smith, R. C.; Ma, T.; Hoilien, N.; Tsung, L. Y.;
Bevan, M. J.; Colombo, L.; Roberts, J.; Campbell, S. A.; Gladfelter,
W. L. AdV. Mater. Opt. Electron. 2000, 10, 105. (c) Kelly, P. V. AdV.
Mater. Opt. Electron. 2000, 10, 115. (d) Senzaki, Y.; Hochberg, A. K.;
Norman, J. A. T. AdV. Mater. Opt. Electron. 2000, 10, 93. (e)
Lucovsky, G.; Phillips, J. C. MRS Symp. Proc. 1999, 567, 201
(Ultrathin SiO2 and High-κ Materials for ULSI Gate Dielectrics).
(15) (a) Bastianini, A.; Battiston, G. A.; Gerbasi, R.; Porchia, M.; Daolio,
S. J. Phys. IV 1995, 5, C5-525. (b) Ohshita, Y.; Ogura, A.; Hoshino,
A.; Hiiro, S.; Machida, H. J. Cryst. Growth 2001, 233, 292. (c)
Hendrix, B. C.; Borovik, A. S.; Xu, C.; Roeder, J. F.; Baum, T. H.;
Bevan, M. J.; Visokay, M. R.; Chambers, J. J.; Rotondaro, A. L. P.;
Bu, H.; Colombo, L. Appl. Phys. Lett. 2002, 80, 2362. (d) Schlom,
D. G.; Guha, S.; Datta, S. MRS Bull. 2008, 33, 1017.
(20) Chen, S.-J.; Zhang, X.-H.; Yu, X.; Qiu, H.; Yap, G. P. A.; Guzei,
I. A.; Lin, Z.; Wu, Y.-D.; Xue, Z.-L. J. Am. Chem. Soc. 2007, 129,
14408.
(21) Wu, Z.-Z.; Cai, H.; Yu, X.-H.; Blanton, J. R.; Diminnie, J. B.; Pan,
H.-J.; Xue, Z.-L. Organometallics 2002, 21, 3973.
(22) (a) Chen, T.-N.; Wu, Z.-Z.; Li, L.-T.; Sorasaenee, K. R.; Diminnie,
J. B.; Pan, H.-J.; Guzei, I. A.; Rheingold, A. L.; Xue, Z.-L. J. Am.
Chem. Soc. 1998, 120, 13519. (b) Chen, T.-N.; Zhang, X.-H.; Wang,
C.-S.; Chen, S.-J.; Wu, Z.-Z.; Li, L.-T.; Sorasaenee, K. R.; Diminnie,
J. B.; Pan, H.-J.; Guzei, I. A.; Rheingold, A. L.; Wu, Y.-D.; Xue,
Z.-L. Organometallics 2005, 24, 1214.
(23) For metal silyl and related chemistry, see, e.g. ,(a) Tilley, T. D. In
The Silicon-Heteroatom Bond; Patai, S., Rappoport, Z.; Eds.; Wiley:
New York, 1991; Chapters 9 and 10. (b) Eisen, M. S. In The Chemistry
of Organic Silicon Compounds Vol. 2; Rappoport, Z.; Apeloig, Y.,
Eds.; Wiley: New York, 1998,Pt. 3, p 2037. (c) Corey, J. Y. In
AdVances in Silicon Chemistry; Larson, G., Ed.; JAI Press: Greenwich,
CT, 1991; Vol. 1, p 327. (d) Gauvin, F.; Harrod, J. F.; Woo, H. G.
AdV. Organomet. Chem. 1998, 42, 363. (e) Sharma, H. K.; Pannell,
K. H. Chem. ReV. 1995, 95, 1351. (f) Campion, B. K.; Falk, J.; Tilley,
T. D. J. Am. Chem. Soc. 1987, 109, 2049. (g) Procopio, L. J.; Carroll,
P. J.; Berry, D. H. Polyhedron 1995, 14, 45. (h) Nikonov, G. I. J.
Organomet. Chem. 2001, 635, 24. (i) Nikonov, G. I.; Mountford, P.;
Ignatov, S. K.; Green, J. C.; Leech, M. A.; Kuzmina, L. G.; Razuvaev,
A. G.; Rees, N. H.; Blake, A. J.; Howard, J. A. K.; Lemenovskii,
D. A. J. Chem. Soc., Dalton Trans. 2001, 2903. (j) Spaltenstein, E.;
Palma, P.; Kreutzer, K. A.; Willoughby, C. A.; Davis, W. M.;
Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 10308.
(16) Son, K.-A.; Mao, A. Y.; Sun, Y.-M.; Kim, B. Y.; Liu, F.; Kamath,
A.; White, J. M.; Kwong, D. L.; Roberts, D. A.; Vrtis, R. N. Appl.
Phys. Lett. 1998, 72, 1187.
3074 Inorganic Chemistry, Vol. 48, No. 7, 2009