370
J . Org. Chem. 2001, 66, 370-375
An Old bu t Sim p le a n d Efficien t Meth od to Elu cid a te th e
Oxid a tion Mech a n ism of NAD(P )H Mod el
1-Ar yl-1,4-d ih yd r on icotin a m id es by Ca tion s
2-Meth yl-5-n itr oisoqu in oliu m , Tr op yliu m , a n d Xa n th yliu m in
Aqu eou s Solu tion
Xiao-Qing Zhu,* Yang Liu, Bing-J un Zhao, and J in-Pei Cheng*
Department of Chemistry, Nankai University, Tianjin 300071, China
xqzhu@nankai.edu.cn
Received J une 27, 2000
Cations 2-methyl-5-nitroisoquinolinium (IQ+), tropylium (T+), and xanthylium (Xn+) were treated
by an NAD(P)H model 1-(p-substituted phenyl)-1.4-dihydronicotinamide series (1) in buffered
aqueous solution to give the corresponding reduced products by accepting hydride. Effects of the
4-substituents of 1 on the reaction rates were investigated. Hammett’s linear free energy relationship
analysis on the three reactions of 1 provides the reaction constants of -0.48, -2.2, and -1.4 with
IQ+, T+, and Xn+ as the hydride acceptors, respectively. Comparison of the present reactions with
the reaction examples whose mechanisms are well-known, such as the reaction of 1 with a one-
electron oxidant Fe(CN)6-3, shows that the active site of 1 in the oxidation with IQ+ is at the
4-position on the dihydropyridine ring but that the active site of 1 in the oxidations with T+ and
Xn+ is at the 1-position, which is in agreement with the results from the Brønsted-type linear
analysis and the relation studies of the logarithm of the second-order rate constants with the
oxidation potentials of the hydride donors. According to the dependence of the reaction mechanism
on the active site of 1, a conclusion can be made that the reaction of 1 with IQ+ proceeds by direct
one-step hydride transfer mechanism, but the reactions of 1 with T+ and Xn+ would take place via
multistep hydride transfer mechanism initiated by one-electron transfer.
In tr od u ction
perimental results collected are not in line to support
each other: some evidence supports that the hydride
transfer occurs by a direct one-step mechanism,9 but
others support that the hydride transfer takes place via
multistep sequence of e-H+-e or e-H•.10 So, the mechanism
of the hydride transfer is still obscure. Systematic
examination of past publications on this subject shows
that various research methods such as kinetic isotope
effect,11 isotope trace,12 thermodynamics,4 photochemis-
try,13 electrochemistry,14 computer-chemistry,15 reaction
intermediate trapping,16 analogue simulator,17 and ster-
The reduced form of the nicotinamide adenine dinucle-
otide coenzyme (NAD(P)H), with the biologically impor-
tant 1,4-dihydropyridine partial structures,1 plays an
important role in many bioreductions by transferring a
hydride ion or an electron to the surrounding substrates.2
The mechanism of the hydride transfer has been a very
interesting subject and has been drawing much more of
the attention of many researchers in the world. 1-Benzyl-
1,4-dihydronicotinamide (BNAH), Hantzsch 1,4-dihydro-
pyridine (HEH), 10-methyl-9,10-dihydroacridine (AcrH2),
and many other 1,4-dihydropyridine derivatives have
been used as NAD(P)H models to probe the mechanistic
details of the hydride transfer.3-8 However, many ex-
(8) (a) Zhu, X.-Q.; Liu, Y.-C. J . Org. Chem. 1998, 63, 2786. (b) Zhu,
X.-Q.; Liu, Y.-C.; Wang, H.-Y.; Wang W. J . Org. Chem. 1999, 64, 8983.
(c) Zhu, X.-Q.; Zou, H.-L.; Yuan, P.-W.; Liu, Y.; Cao, L.; Cheng, J .-P.
J . Chem. Soc., Perkin Trans. 2 2000, 1857. (d) Zhu, X.-Q.; Liu, Y.-C.;
Li, J .; Wang, H.-Y. J . Chem. Soc., Perkin Trans. 2 1997, 2191. (e) Zhu,
X.-Q.; Wang, H.-Y.; Wang, J .-S.; Liu, Y.-C. J . Org. Chem. 2000, in press
(J O001434F). (f) Zhao, B.-J .; Zhu, X.-Q.; He, J .-Q.; Xia, Z.-Z.; Cheng,
J .-P. Tetrahedron Lett. 2000, 41, 257. (g) Liu, Y.-C.; Li, B.; Guo, Q.-X.
Tetrahedron 1995, 51, 9671.
(9) (a) Powell, M. F.; Wu, S. C.; Bruice, T. C. J . Am. Chem. Soc.
1984, 106, 3850. (b) Carlson, B. W.; Miller, L. L. J . Am. Chem. Soc.
1983, 105, 7453. (c) Fukuzumi, S.; Koumitsu, S.; Hironaka, K.; Tanaka,
T. J Am. Chem. Soc. 1987, 109, 305. (d) Sinha, A.; Bruice, T. C. J .
Am. Chem. Soc. 1984, 106, 7291. (e) Lai, C. C.; Colter, A. K. J . Chem.
Soc., Chem. Commun. 1980, 1115. (f) Fukuzumi, S.; Kondo, Y.; Tanaka,
T. J . Chem. Soc., Perkin Trans. 2 1984, 673. (g) Fukuzumi, S.;
Ishikawa, M.; Tanaka, T. J . Chem. Soc., Perkin Trans. 2 1989, 1811.
(10) (a) Powell, M. F.; Bruice, T. C. J . Am. Chem. Soc. 1982, 104,
5834. (b) Powell, M. F.; Bruice, T. C. J . Am. Chem. Soc. 1983, 105,
1014. (c) Verhoeven, J . W.; van Gerresheim, W.; Martiens, F. M.; van
der Kerk, S. M. Tetrahedron 1986, 42, 975. (d) Carlson, B. W.; Miller,
L. L. J . Am. Chem. Soc. 1985, 107, 479. (e) Ostovic, D.; Roberts, R. M.
G.; Kreevoy, M. M. J . Am. Chem. Soc. 1983, 105, 7629. (f) Ostovic, D.;
Lee, I. S.; Roberts, R. M. G.; Kreevoy, M. M. J . Org. Chem. 1985, 50,
4206.
(1) Murakami, Y.; Kikuchi, J .; Hisaeda, Y.; Hayashida, O. Chem.
Rev. 1996, 96, 721-758.
(2) (a) Brewster, M. E.; Simay, A.; Czako, K.; Winwood, D.; Farag,
H.; Bodor, N. J . Org. Chem. 1989, 54, 3721-3726. (b) Friedlos, F.;
Knox, R. J . Biochem. Pharmacol. 1992, 44, 631-635.
(3) (a) Fukuzumi, S.; Tanaka, T. In Photoinduced Electron Transfer;
Fox, M. A., Chanon, M., Eds.; Elsevier: Amsterdam, 1988; Part C, p
578. (b) Fukuzumi, S.; Suenbu, T.; Patz, M.; Hirasaka, T.; Itoh, S.;
Fujitsuka, M.; Ito, O. J . Am. Chem. Soc. 1998, 120, 8060.
(4) (a) Anne, A.; Fraoua, S.; Grass, V.; Moiroux, J .; Saveant, J .-M.
J . Am. Chem. Soc. 1998, 120 2951. (b) Anne, A.; Moiroux, J .; Saveant,
J .-M. J . Am. Chem. Soc. 1993, 115, 10224. (c) Anne, A.; Hapiot, P.;
Moiroux, J .; Neta, P.; Saveant, J .-M. J . Am. Chem. Soc. 1992, 114,
4694.
(5) (a) Miller, L. L.; Valentine, J . R. J . Am. Chem. Soc. 1988, 110,
3982. (b) Carlson, B. W.; Miller, L. L. J . Am. Chem. Soc. 1980, 102,
6533.
(6) Almarsson, O.; Sinha, A.; Gopinath, E.; Bruice, T. C. J . Am.
Chem. Soc. 1993, 115, 7093.
(7) Marcinek, A.; Adamus, J .; Huben, K.; Gebicki, J .; Bartczak, T.;
Bednarek, P.; Bally, T. J . Am. Chem. Soc. 2000, 122, 437-443.
10.1021/jo0009696 CCC: $20.00 © 2001 American Chemical Society
Published on Web 12/30/2000