ORGANIC
LETTERS
2012
Vol. 14, No. 19
5014–5017
One-Pot Synthesis of Amides from
Aldehydes and Amines via CꢀH Bond
Activation
Roberta Cadoni, Andrea Porcheddu, Giampaolo Giacomelli, and Lidia De Luca*
ꢀ
Dipartimento di Chimica e Farmacia, Universita degli Studi di Sassari, Via Vienna 2,
I-07100 Sassari, Italy
Received August 5, 2012
ABSTRACT
A one-pot synthesis of amides from aldheydes with N-chloroamines, prepared in situ from amines, has been developed. Both aliphatic and
aromatic aldehydes and many types of mono- and disubstituted amines are tolerant in this transformation. This cross-coupling reaction appears
simple and convenient, has a wide substrate scope and makes use of cheap, abundant, and easily available reagents.
The amide bond is the key chemical connection present
in many natural important polymers such as peptides
and proteins, as well as in synthetic ones such as nylon.1
The amide functional group is contained in many small-
molecule drugs, marketed agrochemical products, and syn-
thetic intermediates for fine chemical industry. Amide bonds
are typically synthesized by acylation of amines with carb-
oxylic acid derivatives (acid chloride, anhydride, active
esters, etc.):itisthemostcommonmethodologyusedinthe
synthesis of current pharmaceuticals, accounting for 16%
of all reactions. However, this strategy has the innate draw-
back of producing a stoichiometric amount of waste product
and of using highly hazardous reagents.2 To circumvent these
problems, alternative methods for amide synthesis were
developed, such as the Staudinger reaction,3 the Schmidt
reaction,4 the Beckmann rearrangement,5 aminocarbon-
ylation of haloarenes,6 iodonium-promoted R-halo ni-
troalkane amine coupling,7 direct amide synthesis from
alcohols with amines or nitroarenes,8 hydroamination of
alkynes,9 amidation of thioacids with azides,10 and trans-
amidation of primary amides.11
(7) Shen, B.; Makley, D. M.; Johnston, J. N. Nature 2010, 465, 1027–
1032.
(8) (a) Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007, 317,
790–792. (b) Nordstom, L. U.; Vogt, H.; MadsenR. J. Am. Chem. Soc.
2008, 130, 17672–17673. (c) Zweifel, T.; Naubron, J. V.; Grutzmacher,
H. Angew. Chem., Int. Ed. 2009, 48, 559–563. (d) Ghosh, S. C.
Muthaiah, S.; Zhang, Y.; Xu, X.; Homg, S. H. Adv. Synth. Catal.
2009, 351, 2643–2649. (e) Zhang, Y.; Chen, C.; Ghosh, S. C.; Li, Y.;
Hong, S. H. Organometallics 2010, 29, 1374–1378. (f) Cheng, C.; Hong,
S. H. Org. Biomol. Chem. 2011, 9, 20–26. (g) Wang, Y.; Zhu, D.; Tang,
L.; Wang, S.; Wang, Z. Angew. Chem., Int. Ed. 2011, 50, 8917–8921. (h)
Soule, J.-F.; Miyamura, H.; Kobayashi, S. J. Am. Chem. Soc. 2011, 133,
18550–18553. (i) Kegnaes, S.; Mielby, J.; Mentzel, U. V.; Jensen, T.;
Fristrup, P.; Riisager, A. Chem. Commun. 2012, 48, 2427–2429. (j) Xiao,
F.; Liu, Y.; Tang, C.; Deng, G.-J. Org. Lett. 2012, 14, 984–987 and
references herein.
(9) (a) Cho, S.; Yoo, E.; Bae, I.; Chang, S. J. Am. Chem. Soc. 2005,
127, 16046–16047. (b) Chen, Z.-W.; Jiang, H.-F.; Pan, X.-Y.; He, Z.-J.
Tetrahedron 2011, 67, 5920–5927.
(10) (a) Kolakowski, R. V.; Shangguan, N.; Sauers, R. R.; Williams,
L. J. J. Am. Chem. Soc. 2006, 128, 5695–5702. (b) Zhang, X.; Li, F.; Lu,
X. W.; Liu, C. F. Bioconjugate Chem. 2009, 20, 197–200.
(1) Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471–479.
(2) Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38, 606–631.
(3) (a) Saxo, E.; Bertozzi, C. Z. Science 2000, 287, 2007–2010. (b)
Damkaci, F.; De Shong, P. J. Am. Chem. Soc. 2003, 125, 4408–4409. (c)
Gololobov, Y. G.; Kasukhin, L. F. Tetrahedron 1992, 48, 1353–1406.
(4) (a) Ribelin, T.; Katz, C. E.; English, D. G.; Smith, S.; Manukyan,
A. K.; Day, V. W.; Neuenswander, B.; Poutsma, J. L.; Aube, J. Angew.
Chem., Int. Ed. 2008, 47, 6233–6235. (b) Lang, S.; Murphy, J. A. Chem.
Soc. Rev. 2006, 35, 146–156.
(5) (a) Owston, N. A.; Parker, A. J.; Williams, J. M. J. Org. Lett.
2007, 9, 3599–3601. (b) Hashimoto, M.; Obora, Y.; Sakaguchi, S; Ishii,
Y. J. Org: Chem 2008, 73, 2894–2897.
(6) (a) Martinelli, J. R.; Clark, T. p.; Watson, D. A.; Munday, R. H.;
Buchwald, S. L. Angew. Chem. 2007, 119, 8612–8615. (b) Nanayakkara,
P.; Alper, H. Chem. Commun. 2003, 2384–2385.
(11) (a) Dineen, T. A.; Zajac, M. A.; Myers, A. G. J. Am. Chem. Soc.
2006, 128, 16046–16047. (b) Allen, C. L.; Atkinson, B. N.; Williams,
J. M. J. Angew. Chem., Int. Ed. 2012, 51, 1383–1386. (c) Tamura, M.;
Tonomura, T.; Shimizu, K.-I.; Satsuma, A. Green Chem. 2012, 14, 717–
724. (d) Zhang, M.; Imm, S.; Bahn, S.; Neubart, L.; Neumann, H.;
Beller, M. Angew. Chem., Int. Ed. 2012, 51, 3905–3909.
r
10.1021/ol302175v
Published on Web 09/14/2012
2012 American Chemical Society