because TAAs are stable under physiological conditions and
labile under relevant acidic conditions such as those found
in endosomal compartments, tumor tissues, and sites of
inflammation.18
Notes and references
´
1 (a) J. M. J. Frechet and D. A. Tomalia, Dendrimers and Other
Dendritic Polymers, Wiley, New York, 2002; (b) G. R. Newkome,
C. N. Moorefield and F. Vogtle, Dendrimers and Dendrons: Con-
¨
cepts, Syntheses, Applications, VCH, Weinheim, 2001.
2 S. C. Zimmerman, J. R. Quinn, E. Burakowska and R. Haag,
Angew. Chem., Int. Ed., 2007, 46, 8164.
3 Y. Kim, M. F. Mayer and S. C. Zimmerman, Angew. Chem., Int.
Ed., 2003, 42, 1121.
4 M. J. W. Ludden, D. N. Reinhoudt and J. Huskens, Chem. Soc.
Rev., 2006, 35, 1122.
5 (a) A. K. Patri, J. F. Kukowska-Latallo and J. R. Baker, Jr, Adv.
Drug Delivery Rev., 2005, 57, 2203; (b) C. C. Lee, J. A. MacKay, J.
M. J. Frechet and F. C. Szoka, Nat. Biotechnol., 2005, 23, 1517.
´
Fig. 2 (a) Azide region of IR spectra of core and dendrimers;
(b) GPC traces of monomer and dendrimers.
6 M. Gingras, J.-M. Raimundo and Y. M. Chabre, Angew. Chem.,
Int. Ed., 2007, 46, 1010.
7 (a) H. Ihre, O. L. Padilla de Jesu´ s and J. M. J. Frechet, J. Am.
´
Chem. Soc., 2001, 123, 5908; (b) M. W. Grinstaff, Chem.–Eur. J.,
2002, 8, 2838; (c) N. G. Lemcoff and B. Fuchs, Org. Lett., 2002, 4,
731. Self-immolative dendrimers also degrade at each branch
point; (d) M. L. Szalai, R. M. Kevwitch and D. V. McGrath,
J. Am. Chem. Soc., 2003, 125, 15688; (e) F. M. H. de Groot,
C. Albrecht, R. Koekkoek, P. H. Beusker and H. W. Scheeren,
Angew. Chem., Int. Ed., 2003, 42, 4490; (f) R. J. Amir, N. Pessah,
M. Shamis and D. Shabat, Angew. Chem., Int. Ed., 2003, 42, 4494.
8 A. M. Balija, R. E. Kohman and S. C. Zimmeman, Angew. Chem.,
Int. Ed., 2008, 47, 8072.
calculated values (ESIw). Analytical GPC showed narrow,
symmetric peaks characteristic of perfect dendrimers
(Fig. 2b). The characterization showed complete conversion
of all reactions for the first two dendrimer generations.
Imperfections resulting from incomplete conversion, which
are a common occurrence when synthesizing dendrimers
divergently, were only seen in product 11 in which 27 reactions
per molecule were needed. Only the trace for dendrimer 11
shows evidence of incomplete monomer attachment as
evidenced by a shoulder at higher retention times.
´
9 E. R. Gilles and J. M. J. Frechet, Bioconjugate Chem., 2005, 16,
361.
10 S. D. Kong, A. Luong, G. Manorek, S. B. Howell and J. Yang,
Bioconjugate Chem., 2007, 18, 293.
Addition of HCl to
a solution of compound 9 in
11 Notable examples: (a) T. Kawaguchi, K. L. Walker, C. L. Wilkins
and J. S. Moore, J. Am. Chem. Soc., 1995, 117, 2159; (b) F. Zeng
and S. C. Zimmerman, J. Am. Chem. Soc., 1996, 118, 5326. For a
THF–MeOH confirmed that the dendrimers were fully
degradable. The by-products, which were analyzed by 1H
NMR and mass spectrometry, corresponded to the aldehyde
groups from the periphery of the dendrimer, the aldehyde
groups from the interior of the dendrimer, and the core.
Amounts and ratios of compounds were in good agreement
with the calculated values (ESIw).
In conclusion, dendrimers were synthesized from a degrad-
able 1,3,5-triazaadamantane (TAA) monomer. The largest
contains 39 TAA molecules, displays 81 functional groups
on its periphery, and has a molecular weight above 35 kDa.
Although a divergent strategy was used, a remarkably high
conversion was observed for several generations. The method
demonstrated here allows the synthesis of dendrimers that
contain TAA groups throughout the entire structure. Because
an iterative strategy is used, it should be possible to incorpo-
rate TAA monomers with different degradation rates thus
allowing for the creation of generation dependent degradable
dendrimers possessing both spatial and temporal control of
degradation. After appropriate surface modification that
would enable water solubility, these materials may be useful
for biological applications such as drug and/or gene delivery
more recent orthogonal approach see: (c) P. Antoni, D. Nystrom,
¨
C. J. Hawker, A. Hult and M. Malkoch, Chem. Commun., 2007,
2249.
12 V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless,
Angew. Chem., Int. Ed., 2002, 41, 2596.
13 Selected examples of dendrimer synthesis via CuAAC:
(a) M. J. Joralemon, R. K. O’Reilly, J. B. Matson,
A. K. Nugent, C. J. Hawker and K. L. Wooley, Macromolecules,
2005, 38, 5436; (b) G. Franc and A. Kakkar, Chem. Commun.,
2008, 5267; (c) J. W. Lee, H. J. Kim, S. C. Han, J. H. Kim and
S.-H. Jin, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 1083;
(d) S. L. Elmer, S. Man and S. C. Zimmerman, Eur. J. Org. Chem.,
2008, 3845.
14 T. J. Dunn, W. L. Neumann, M. M. Rogic and S. R. Woulfe,
J. Org. Chem., 1990, 55, 6368.
15 S. L. Roberts, R. L. E. Furlan, S. Otto and J. K. M. Sanders, Org.
Biomol. Chem., 2003, 1, 1625.
16 Consistent with ref. 8, compound 5 is produced as a mixture of
diastereomers in which 90% is in the conformation drawn. This
mixture had no effect on the dendrimer synthesis.
17 B.-Y. Lee, S. R. Park, H. B. Jeon and K. S. Kim, Tetrahedron
Lett., 2006, 47, 5105.
18 (a) I. Mellman, R. Fuchs and A. Helenius, Annu. Rev. Biochem.,
1986, 55, 663; (b) I. F. Tannock and D. Rotin, Cancer Res., 1989,
49, 4373.
ꢀc
This journal is The Royal Society of Chemistry 2009
796 | Chem. Commun., 2009, 794–796