1462
N. Oukli et al. / Tetrahedron Letters 50 (2009) 1459–1462
Relat. Elem. 2007, 182, 121–132; (b) El-Emary, T. I.; Khodairy, A. Phosphorus,
Sulfur Silicon Relat. Elem. 2006, 181, 1073–1085; (c) Swelam, S. A.; Fawzy, N. M.
Egypt J. Chem. 2004, 47, 565–577; (d) Resnyanska, E. V.; Tverdokhlebov, A. V.;
Tolmachev, A. A.; Volovenko, Y. M.; Shokol, T. V. Heterocycles 2004, 63, 797–
807; (e) El-Gaby, M. S. A.; Gaber, A. M.; Atalla, A. A.; Al-Wahab, K. A. A. Farmaco
2002, 57, 613–618; (f) Dave, C. G.; Parikh, V. A. Synth. Commun. 2001, 31, 1301–
1306; (g) Abbady, M. A.; Abdel-Hafez, S. H. Phosphorus, Sulfur Silicon Relat. Elem.
2000, 160, 121–140; (h) Schaefer, H.; Gewald, K. Monatsh. Chem. 1989, 120,
315–322.
imides ( )-13, which involved an original tandem ring closure/ring
opening of a d-lactam nucleus in acceptable yields. As the desirable
7-hexahydro-aza-indole ( )-10 was not isolated directly due its
fast hydrolysis during the work up, its formation, however, was
proved by isolating an ethoxy equivalent ( )-15a when the reac-
tion was quenched with ethanol. The latter after acidic hydrolysis
led to polysubstituted imides ( )-13 as above.
The polysubstituted imide systems containing a primary amide
function obtained ( )-13 with this protocol were then used as valu-
able templates to provide original and novel 7-hexahydro-aza-in-
doles in two steps. For this purpose, their regioselective
reduction with sodium borohydride afforded a mixture of two dia-
stereomers of hydroxy lactams ( )-17, inseparable, in nearly quan-
titative yields. From these observations, the latter were then
treated (without their total characterization) in acidic medium
(BF3ÁEt2O) and provided the expected 7-hexahydro-aza-indoles
( )-16 containing substituents via stable N-acyliminium species
with a very high degree of diastereoselectivity (dr >95%).
15. (a) Ref.14f and references cited therein.; Enaminonitriles are important building
blocks for the construction of a variety of fused aza-heterocyclic systems. For
this end, see also: (b) Taylor, E. C.; McKillop, A. In Advanced Organic Chemistry;
Taylor, E. C., Ed.; Interscience: New York, 1970; Vol. 7, (c) Paulvannan, K.; Stille,
J. R. J. Org. Chem. 1992, 57, 5319–5328.
16. For representative examples in this area, see: (a) Paulvannan, K.; Stille, J. R. J.
Org. Chem. 1994, 59, 1613–1620; (b) Barta, N. S.; Brode, A.; Stille, J. R. J. Am.
Chem. Soc. 1994, 116, 6201–6206; (c) Agami, C.; Hamon, L.; Kadouri-Puchot, C.;
Le Guen, V. J. Org. Chem. 1996, 61, 5736–5742; (d) Agami, C.; Dechoux, L.;
Hebbe, S. Tetrahedron Lett. 2002, 43, 2521–2523.
17. (a) Sonoda, M.; Kuriyama, N.; Tomioka, Y.; Yamazaki, M. Chem. Pharm. Bull.
1982, 30, 2357–2363; (b) Sonoda, M.; Kuriyama, N.; Tomioka, Y.; Yamazaki, M.
Chem. Pharm. Bull. 1986, 34, 886–892.
18. Matsunaga, H.; Sonoda, M.; Tomioka, Y.; Yamazaki, M. Chem. Pharm. Bull. 1984,
32, 2596–2601.
Finally, we anticipated that the transformations developed in
this project, particularly in the access to 7-hexahydro-aza-indoles
containing substituents, would find further applications in synthe-
sis of aromatic 7-aza-indoles with promising biological properties.
Work toward these systems is currently in progress, and the results
will be reported in due course.
19. For trapping of N-acyliminium species with allyltrimethyl-silane, see for
example: Pin, F.; Comesse, S.; Garrigues, B.; Marchalin, S.; Daïch, A. J. Org. Chem.
2007, 72, 1181–1191. and references cited therein.
20. Typical Procedure for the synthesis of polysubstituted imides ( )-13: Acryloyl
chloride (14a, 500
ll, 6,0 mmol) was added at 0 °C to a solution of ( )-12a–c
(4.0 mmol) in CH2Cl2 (40 mL). After 12 h at rt, the reaction mixture was cooled
to 0 °C and quenched carefully by addition of an aqueous saturated solution of
NaHCO3 (50 mL). The aqueous layer was extracted with CH2Cl2 (3 Â 30 mL),
and the organic layers were combined, dried over MgSO4, and evaporated. The
residue was then purified by chromatography on silica gel to furnish 13a–c
(AcOEt/cyclohexane). In the case of 15a, ethanol was added in place of the
aqueous saturated solution of NaHCO3. Selected data for ( )-1-benzyl-7a-ethoxy-
2,6-dioxooctahydro-1H-pyrrolo[2,3-b]pyridine-3a-carbonitrile (15a): An analytical
sample was obtained by recrystallization from dry ethanol. This product was
isolated as a white solid: mp = 163–165 °C; Yield = 65% (AcOEt/cyclohexane,
Acknowledgments
The authors are grateful to the Algerian and French Governments for
the Graduate Fellowship (2006–2008) attributed to one of us, N. Oukli.
20:80); IR (KBr)
m 3417, 3192, 2098, 2939, 2241, 1722, 1690, 1492,
1448 cmÀ1 1H NMR (300 MHz, CDCl3): d 8.33 (s, 1H), 7.27 (s, 5H), 4.62 (d,
;
References and notes
J = 15.5 Hz, 1H), 4.31 (d, J = 15.5 Hz, 1H), 3.42–3.55 (m, 2H), 3.19 (d,
J = 17.0 Hz, 1H), 2.66 (td, J = 18.0 and 5.0 Hz, 1H), 2.64 (d, J = 17.0 Hz, 1H),
2.40 (dt, J = 18.0 and 3.8 Hz, 1H), 2.19 (dt, J = 13.5 and 3.8 Hz, 1H), 1.96 (td,
J = 13.5 and 4.4 Hz, 1H), 1.10 (t, J = 6.9 Hz, 3H); 13C NMR (75 MHz, CDCl3): d
170.3, 168.7, 136.4, 128.7, 128.0, 127.8, 117.9, 99.7, 60.9, 42.6, 40.6, 40.2, 30.5,
28.0, 14.8. Anal. Calcd for C17H19N3O3: C, 65.16; H, 6.11; N, 13.41. Found: C,
65.02; H, 5.98; N, 13.31.
1. Only three examples of alkaloids such as variolins-A, -B, and -D showing
antitumor and antiviral properties are known. For that, see: (a) Perry, N. B.;
Ettouati, L.; Litaudon, M.; Blunt, J. W.; Munro, M. H. G.; Parkin, S.; Hope, H.
Tetrahedron 1994, 50, 3987–3992; (b) Trimurtulu, G.; Faulkner, D. J.; Perry, N.
B.; Ettouati, L.; Litaudon, M.; Blunt, J. W.; Munro, M. H. G.; Jameson, G. B.
Tetrahedron 1994, 50, 3993–4000; (c) Fernández, D.; Ahaidar, A.; Danelón, G.;
Cironi, P.; Marfil, M.; Pérez, O.; Cuevas, C.; Albericio, F.; Joule, J. A.; Alvarez, M.
Monatsh. Chem. 2004, 135, 615–627.
2. For reviews in this area, see: (a) Mérour, J.-Y.; Joseph, B. Curr. Org. Chem.
2001, 5, 471–506; (b) Le Hyaric, M.; Vieira de Almeida, M.; Nora de Souza, M.
V. Quim. Nova 2002, 25, 1165–1171; (c) Popowycz, F.; Routier, S.; Joseph, B.;
Mérour, J.-Y. Tetrahedron 2007, 63, 1031–1064.
21. (a) Pesquet, A.; Daïch, A.; Decroix, B.; Van Hijfte, L. Org. Biomol. Chem. 2005, 3,
3937–3947; (b) Pesquet, A.; Daïch, A.; Coste, S.; Van Hijfte, L. Synthesis 2008,
1389–1396.
22. (a) Sun, H.; Moeller, K. D. Org. Lett. 2002, 4, 1547–1550; (b) Sun, H.; Martin, C.;
Kesselring, D.; Keller, R.; Moeller, K. D. J. Am. Chem. Soc. 2006, 128, 13761–
13771. and references cited therein.
23. (a) Wijnberg, J. B. P. A.; Speckamp, W. N. Tetrahedron 1978, 34, 2399–2404; (b)
Baldwin, J. E.; Hulme, C.; Edwards, A. J.; Schofield, C. J. Tetrahedron Lett. 1993,
34, 1665–1668; (c) Comille, F.; Fobian, Y. M.; Slomczynskq, U.; Beusen, D. D.;
Marshall, G. R.; Moeller, K. D. Tetrahedron Lett. 1994, 35, 6989–6992; (d) Cul, A.;
Daïch, A.; Decroix, B.; Sanz, G.; Van Hijfte, L. Tetrahedron 2004, 60, 11029–
11039; (e) Barbosa, Y. A. O.; Hart, D. J.; Magomedov, N. A. Tetrahedron 2006, 62,
8748–8754; (f) Sannigrahi, M.; Pinto, P.; Chan, T. M.; Shih, N. Y.; Njoroge, F. G.
Tetrahedron Lett. 2006, 47, 4877–4880.
3. In the past decade, considerable investigations have been made on the
synthesis, and use of substituted 7-aza-indoles and some of them have been
1
patented. For this end, see Ref.
.
4. (a) Tsuge, O.; Itoh, T.; Tashiro, M. Tetrahedron 1968, 24, 2583–2590; (b) Arab,
A.; Zacarin, G. G.; Fontanetti, C. S.; Camargo-Mathias, M. I.; Dos Santos, M. G.;
Cabrera, A. Entomotropica 2003, 18, 79–82.
5. (a) Metz, G.; Schwenker, G. Arch. Pharm. 1985, 318, 189–190; (b) Metz, G.;
Schwenker, G. J. Chem. Res. (M) 1985, 1246–1254; (c) Metz, G. Arch. Pharm.
1987, 320, 285–286; (d) Metz, G. J. Chem. Res. (M) 1987, 746–754.
6. Drago, L.; Vecchi, E. D.; Nicola, L.; Gismondo, M. R. Arzneim. Forsch 2005, 55,
473–477.
7. Sunazuka, T.; Shirahata, T.; Tsuchiya, S.; Hirose, T.; Mori, R.; Harigaya, Y.;
Kuwajima, I.; Ohmura, S. Org. Lett. 2005, 7, 941–943.
8. (a) Winters, G.; Di Mola, N. French Patent FR 2242982, 1974; Chem. Abstr. 1974,
82, 156255.; (b) Matthews, N.; Franklin, R. J.; Kendrick, D. A. Biochem.
Pharmacol. 1995, 50, 1053–1062.
9. (a) Vogel, A.; Troxler, F.; Lindenmann, A. Helv. Chem. Acta 1969, 52, 1929–1939;
(b) Iwakuma, T.; Miyazaki, M.; Mashimo, K.; Tanaka, T.; Aoe, K.; Nagahashi, M.;
Date, T.; Kotera, K. J. Chem. Soc., Perkin Trans. 1 1979, 2162–2166.
10. For recent examples, see: (a) Artman, G. D., III; Weinreb, S. M. Org. Lett 2003, 5,
1523–1526; (b) Fuchs, J. R.; Funk, R. L. J. Am. Chem. Soc. 2004, 126, 5068–5069; (c)
Saba hi, A.; Novikov, A.; Rainier, J. D. Angew. Chem., Int. Ed. 2006, 45, 4317–4320.
11. (a) Han, M.; Nam, K.-D.; Hahn, H.-G.; Shin, D. Tetrahedron Lett. 2008, 49, 5217–
5219; (b) Frohberg, P.; Drutkowski, G.; Wanger, C. Eur. J. Org. Chem. 2002,
1654–1663; (c) Shawali, A. S.; Abdallah, M. A.; Mosselhi, M. A. N.; Farghaly, T.
A. Heteroat. Chem. 2002, 13, 136–140.
24. Typical procedure for the aza-cyclization reaction of hydroxy lactams ( )-17.
BF3ÁOEt2 (500
ll, 3.6 mmol) was added at rt to a solution of hydroxyl lactams
( )-17a–c (1,8 mmol) in CH2Cl2 (20 mL). After 12 h of the reaction, the
mixture was cooled to 0 °C and quenched carefully by addition of an aqueous
saturated solution of NaHCO3 (30 mL). The aqueous layer was extracted with
CH2Cl2 (3 Â 20 mL), and the organic layers were combined, dried over MgSO4,
and evaporated. The residue was further purified by chromatography on silica
gel column by using a mixture of AcOEt/cyclohexane as eluent. Selected data
for ( )-2,6-Dioxo-1-phenethyloctahydro-1H-pyrrolo[2,3-b]pyridine-3a-carbonitrile
(16b): This product was isolated as
Yield = 98% (AcOEt/cyclohexane, 20:80); IR (KBr)
1684 cmÀ1 1H NMR (300 MHz, CDCl3): d 7.90 (br s, 1H), 7.27–7.15 (m, 5H),
a
white solid: mp = 197–199 °C;
m
3346, 2930, 2240,
;
4.77 (d, J = 3.6 Hz, 1H), 3.74 (dt, J = 14.1 and 7.1 Hz, 1H), 3.32 (dt, J = 14.1 and
7.1 Hz, 1H), 2.91–2.78 (m, 2H), 2.86 (d, J = 16.9 Hz, 1H), 2.55 (d, J = 16.9 Hz,
1H), 2.48 (ddd, J = 18.0, 10.9 and 5.3 Hz, 1H), 2.29 (dt, J = 18.0 and 4.8 Hz, 1H),
2.05 (dt, J = 14.1 and 5.3 Hz, 1H), 1.97 (ddd, J = 15.0, 10.9 and 4.8 Hz, 1H); 13C
NMR (75 MHz, CDCl3): d 170.8, 168.0, 138.0, 129.0, 128.7, 127.2, 119.5, 70.3,
41.3, 40.7, 33.6, 33.1, 28.2, 27.8. Anal. Calcd for C16H17N3O2: C, 67.83; H, 6.05;
N, 14.83. Found: C, 67.67; H, 5.89; N, 14.69.
12. Comesse, S.; Sanselme, M.; Daïch, A. J. Org. Chem. 2008, 73, 5566–5569. and
references cited therein.
13. Allous, I.; Comesse, S.; Daïch, A. Lett. Org. Chem. 2008, 5, 73–78. and references
cited therein.
14. For representative examples of this process using different conditions, see: (a)
El-Osaily, Y. A.; Sarhan, A. A. O.; El-Dean, A. M. Kamal. Phosphorus, Sulfur Silicon
25. (a) Veenstra, S. J.; Speckamp, W. N. J. Am. Chem. Soc. 1981, 103, 4645–4646; (b)
Koot, W. J.; Hiemstra, H.; Speckamp, W. N. Tetrahedron Lett. 1992, 33, 7969–
7972; (c) Luker, T.; Koot, W. J.; Hiemstra, H.; Speckamp, W. N. J. Org. Chem.
1998, 63, 220–221.
26. Gramain, J. C.; Remuson, R. Tetrahedron Lett. 1985, 26, 4083–4086.