S. D. Kuduk et al. / Bioorg. Med. Chem. Lett. 19 (2009) 4059–4063
4063
450
400
350
300
250
200
150
100
50
100
vehicle
20 mg/kg naproxen
30 mg/kg 10b
75
50
25
0
*
*
0
BL
CFA
30 min
Figure 4. Effect of 10b in the rat CFA inflammatory pain model (left); data represented as % reversal of mechanical hypersensitivity (right); p <0.05 vs vehicle.
Highlighting the preference for meta-substitution, the 3,5-di-
chloro analog 10b was ꢀ20-fold more potent (ASIC3 IC50 = 133 nM)
than the phenyl comparator 10a. Placement of additional groups
on 10b at the ortho (10c) or para-positions (10d) had no effect or
led to a decrease in channel inhibition. Similarly, insertion of a pyr-
idine (10e) led to a modest twofold drop in activity. The lipophilic-
ity of the substituents also appears to have effects on activity. For
example, exchanging one of the chlorines with a fluorine (10f), led
to a decrease in activity, while replacement with a bromine (10g)
led to one of the most potent compounds observed (IC50 = 59 nM).
Addition of a second bromine (10h) did not provide any further
improvements. Interestingly, as shown with compounds 10i–n,
the meta position is remarkably tolerant of substitution so long
as the other meta group has a halogen (ideally chlorine) in this
position.
In order to more fully characterize this indole amidine class of
ASIC3 channel blockers, 3,5-dichloro analog 10b was examined
in vivo in the rat Complete Freud’s Adjuvant (CFA) model of inflam-
matory pain.21 In this study, 10b showed a robust reversal of
mechanical hypersensitivity 30 min post-dosing in male Spra-
gue–Dawley rats at 30 mg/kg ip that was comparable to the NSAID
naproxen (dosed at 20 mg/kg po). Interestingly, when plasma22
and brain were analyzed for compound levels of 10b at 30 min,
all results were below the level of quantification (Fig. 4).
any oral bioavailability in rat and also exhibits high partitioning
into red blood cells. Accordingly, efforts have been initiated to re-
place the amidine moiety to improve upon these latter two issues,
and results will be reported in due course.
References and notes
1. Childers, W. E.; Gilbert, A. M.; Kennedy, J. D.; Whiteside, G. T. Expert Opin. Ther.
Patents 2008, 18, 1027.
2. Krishtal, O. Trends Neurosci. 2003, 26, 477.
3. Caterina, M. J.; Julius, D. Annu. Rev. Neurosci. 2001, 24, 487.
4. Cortright, D. N.; Crandall, M.; Sanchez, J. F.; Zou, T.; Krause, J. E.; White, G.
Biochem. Biophys. Res. Comm. 2001, 281, 1183.
5. Correll, C. C.; Palani, A. Expert Opin. Ther. Patents 2006, 16, 783.
6. Kyle, D. J.; Tafesse, L. Expert Opin. Ther. Patents 2006, 16, 977.
7. Wemmie, J. A.; Price, M. P.; Welsh, M. J. Trends Neurosci. 2006, 29, 578.
8. Waldmann, R. Adv. Exp. Med. Biol. 2001, 502, 293.
9. Mamet, J.; Baron, A.; Lazdunski, M.; Voilley, N. J. Neurosci. 2002, 22, 10662.
10. Lingueglia, E. J. Biol. Chem. 2007, 282, 17325.
11. Jones, N. G.; Slater, R.; Cadiou, H.; McNaughton, P.; McMahon, S. B. J. Neurosci.
2001, 4, 10974.
12. Babinski, K.; Le, K. T.; Seguela, P. J. Neurochem. 1999, 72, 51.
13. Yiangou, Y. Eur. J. Gastroenerol. Hepatol. 2001, 13, 891.
14. Sluka, K. A.; Price, M. P.; Breese, N. M.; Stucky, C. L.; Wemmie, J. A.; Welsh, M. J.
Pain 2003, 106, 229.
15. Ugawa, S.; Ueda, T.; Ishida, Y.; Nishigaki, M.; Shibata, Y.; Shimada, S. J. Clin.
Invest. 2002, 110, 185.
16. Ferreira, J.; Santos, A. R. S.; Calixto, J. B. Life Sci. 1999, 65, 1059.
17. Kuduk, S. D.; Di Marco, C. N.; Chang, R. K.; DiPardo, R. M.; Cook, S. P.; Cato, M. J.;
Jovanaskova, A.; Urban, M. O.; Leitl, M.; Spencer, R. H.; Kane, S. A.; Bilodeau, M.
T.; Hartman, G. D.; Bock, M. G. Bioorg. Med. Chem. Lett. 2009, 19, 2514.
18. Dube, G. R.; Lehto, S. G.; Breese, N. M.; Baker, S. J.; Wang, X.; Matulenko, M. A.;
Honore, P.; Stewart, A. O.; Moreland, R. B.; Brioni, J. D. Pain 2005, 117, 88.
19. Thiebes, C.; Prakash, G. K. S.; Petasis, N. A.; Olah, G. A. Synlett 1998, 141.
20. Acid-evoked (pH5.5 for 3 s) current was recorded at À60 mV using an
automated patch clamp instrument (PatchXpress, MDS, Inc.). The
intracellular solution contained (mM): 119 K-gluconate, 15 KCl, 3.2 MgCl2, 5
EGTA, 5 HEPES, 5 K2ATP, pH 7.3. The extracellular solution contained (mM):
150 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 12 Dextrose, and 10 HEPES (pH 7.4) or 10
MES (pH5.5). Compounds were applied 120 s prior to acid application. Peak
current following compound incubation was expressed as a fraction of the
control (vehicle) peak current. IC50 values were determined by fitting data to
the Hill equation.
To follow up on this result, a rat pharmacokinetic study was car-
ried out. Compound 10b was not orally bioavailable, which was not
necessarily unexpected due to the presence of the amidine moi-
ety.23 The iv plasma pharmacokinetics showed very high cleare-
ance (Cl = 52 ml/min/kg) with
a short half-life (t1/2 = 2.0 h).
However, analysis of the blood samples showed lower clearance
(Cl = 8.5 ml/min/kg) with a more moderate half-life (t1/2 = 4.4 h)
indicating that 10b was partitioning into red blood cells.
In summary, screening a sub-set of the MRL sample repository
for aryl amidines led to the discovery of indole bis-amidine 3 as
a low MW, modest ASIC channel blocker. SAR analysis quickly
21. Stein, C.; Millan, M. J.; Herz, A. Pharm. Biochem. Behav. 1988, 31, 445.
22. Compound 10b did not show any binding to rat plasma proteins.
23. Kamanka, T.; Park, Y.-J.; Lin, L. S.; de Laszlo, S.; McCauley, E. D.; Van Riper, G.;
Egger, L.; Kidambi, U.; Mumford, R. A.; Tong, S.; Tang, W.; Colletti, A.; Teffera,
Y.; Stearns, R.; MacCoss, M.; Schmidt, J. A.; Hagmann, W. K. Bioorg. Med. Chem.
Lett. 2004, 14, 2323.
led to the identification of mono-amidine 10b as
a potent
(IC50 = 133 nM) ASIC3 channel blocker that exhibited efficacy sim-
ilar to that of naproxen in the rat CFA model of mechanical hyper-
algesia. This indole amidine class of compounds does not possess