J.-C. Monbaliu et al. / Tetrahedron Letters 50 (2009) 1314–1317
11. Palacios, F.; Alonso, C.; de los Santos, J. M. Chem. Rev. 2005, 105, 899.
1317
cial selectivity is controlled by the energetic discrimination be-
tween the two reactive conformers of the diene (anti and syn con-
formers). This energetic preference for the anti conformer increases
with progressive oxygen–sulfur replacement in the chiral auxiliary.
Calculations taking solvent effects into account indicate that the
main factor responsible for the observed increase in facial selectiv-
ity upon going from oxazolidin-2-one to oxazolidin-2-thione chiral
auxiliary is the lower stabilization of the syn conformer by hydro-
gen bond in the case of sulfur atom.
12. (a) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A. Jr.; Stratmann, R. E.;
Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M.
C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.;
Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.;
Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman,
J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko,
A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-
Laham; M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill,
P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-
Gordon, M.; Replogle, E. S.; Pople, J. A., Gas Phase Calculations were Done Using
the GAUSSIAN Suite of Programs, Revision A.7, Gaussian, Inc., Pittsburgh, PA,
1998.; (b) For solution phase calculations (THF), given energies are obtained
Acknowledgements
after corresponding fully analytical single point calculations (B3LYP/6-31G**
)
using the fine DFT grid and the polarizable continuum-Poisson method as
incorporated in Jaguar program, version 6.5, Schrödinger, LLC, New York, NY,
2005.
This work was supported by FRIA (fellowship to J.-C.M.), and
F.R.S.-FNRS by its support to access computational facilities (FRFC
Project No. 2.4556.99 ‘Simulations numériques et traitement des
données’). R.R. is a Chargé de recherches F.R.S.-FNRS. J.M.-B. is a se-
nior research associate of F.R.S.-FNRS.
13. Unconstrained optimizations were performed at the modified B3LYP/6-31G
level (with supplementary
d orbitals for sulfur atoms). SP energies were
calculated at the B3LYP/6-31G** level.
14. The approach of the dienophile from the b-face of the diene was found to be
disfavoured by about 5 kcal molꢀ1 (B3LYP/6-31G).
15. Due to the intrinsic geometrical features of the oxazolidin-2-one, oxazolidin-2-
thione and thiazolidin-2-thione, we have observed an increased XꢁꢁꢁH–C(2)
distance for compounds 2a–c (2.28–2.61 Å).
References and notes
16.
D
Earot was found constant as a consequence of the conformational adaptability
1. Fringuelli, F.; Taticchi, A. The Diels–Alder Reaction; John Wiley & Sons, Ltd, 2002.
2. (a) Liu, X.; Snyder, J. K. J. Org. Chem. 2008, 73, 2935–2938; (b) Songis, O.; Geant,
P. Y.; Sautrey, G.; Martinez, J.; Calmes, M. Eur. J. Org. Chem. 2008, 308–318; (c)
Henderson, J. R.; Parvez, M.; Keay, B. A. Org. Lett. 2007, 9, 5167–5170; (d)
Calmes, M.; Escale, F.; Didierjean, C.; Cazals, G.; Martinez, J. Tetrahedron:
Asymmetry 2007, 18, 2491–2496.
of the nitrogen atom.
17. Dienophile 3a was commercially available. Dienophiles 3b–e were synthesized
from the described protocol in the literature. (a) McClure, C.; Hansen, K.
Tetrahedron Lett. 1996, 37, 2149–2152; (b) Afarinkia, K.; Evans, M.; Graham, J.;
Jimenez-Bueno, G. Tetrahedron Lett. 1998, 39, 433–434; (c) Nickson, T. J. Org.
Chem. 1988, 53, 3870–3872.
3. Carmona, D.; Lamata, M. P.; Viguri, F.; Rodriguez, R.; Lahoz, F. J.; Dobrinovitch, I.
T.; Oro, L. A. Dalton Trans. 2008, 3328–3338.
18.
A
solution of (R)-3-(30-oxobut-10-enyl)-4-phenyloxazolidin-2-thione
4
(2.54 mmol, 0.63 g), TBDMSCl (3.2 mmol, 0.48 g) and triethylamine
(3.2 mmol, 0.44 cm3) in anhydrous MeCN (5 mL) was treated dropwise with
an anhydrous solution of NaI (3.2 mmol, 0.48 g) in MeCN (2 mL) at room
temperature over 10 min. After 15 h, the solution was concentrated under
reduced pressure. The oily residue is diluted in petroleum ether (5 cm3) and
filtrated over a slight celite pad. Petroleum ether was removed under reduced
pressure (temperature bath less 30 °C) to give pure 2d as a yellow oil (0.91 g,
>99%); 1H NMR (500 MHz, CDCl3) d: 7.67 (d, J1,2 = 14.4 Hz, C(1)–H, 1H), 7.2–
4. Akalay, D.; Duerner, G.; Goebel, M. W. Eur. J. Org. Chem. 2008, 2365–2368.
5. (a) Winkel, A.; Reddy, P. V. G.; Wilhelm, R. Synthesis 2008, 999–1016; (b)
Headley, A. D.; Ni, B. Aldrichim. Acta 2007, 40, 107–117; (c) Van Buu, O. N.; Vo-
Thanh, G. Lett. Org. Chem. 2007, 4, 158–167; (d) Pegot, B.; Van Buu, O. N.; Gori,
D.; Vo-Thanh, G. B. J. Org. Chem. 2006, 2.
6. (a) Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Tetrahedron 2001, 57,
9225; (b) Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250–6284; (c) Perreux,
L.; Loupy, A. Tetrahedron 2001, 57, 9199–9223.
0
0
7.38 (m, 5H), 5.31 (d, J2,1 = 14.4 Hz, C(2)–H, 1H), 5.21 (dd, J4 ,5a = 9.0 Hz and
7. Jenner, G. Tetrahedron 2002, 58, 5185–5202.
J4 ,5b = 4.4 Hz, C(40)–H, 1H), 4.86 (t, J5a ,5b = 9.0 Hz, C(50)–Ha, 1H), 4.36 (dd,
0
0
0
0
8. (a) Monbaliu, J.-C.; Marchand-Brynaert, J. Tetrahedron Lett. 2008, 49, 1839–
1842; (b) Monbaliu, J.-C.; Tinant, B.; Marchand-Brynaert, J. J. Mol. Struct. 2008,
879, 113–118; (c) Robiette, R.; Defacqz, N.; Peeters, D.; Marchand-Brynaert, J.
Curr. Org. Synth. 2005, 2, 453; (d) Tinant, B.; Defacqz, N.; Robiette, R.; Touillaux,
R.; Marchand-Brynaert, J. Phosphorus, Sulfur, Silicon 2004, 179, 389; (e) Robiette,
R.; Cheboub-Benchaba, K.; Peeters, D.; Marchand-Brynaert, J. J. Org. Chem. 2003,
68, 9809. and references cited therein; For references on other chiral
aminodienes, see: (f) Kozmin, S.; Rawal, V. H. J. Am. Chem. Soc. 1997, 119,
7165–7166; (g) Kozmin, S.; Rawal, V. H. J. Am. Chem. Soc. 1999, 121, 9562–
9573; (h) Janey, J.; Iwama, T.; Kozmin, S.; Rawal, V. H. J. Org. Chem. 2000, 65,
9059–9068; (i) Murphy, J. P.; Nieuwenhuyzen, M.; Reynolds, K.; Sarma, P. K. S.;
Stevenson, P. J. Tetrahedron Lett. 1995, 36, 9533–9536; (j) McAlonan, H.;
Murphy, M.; Nieuwenhuyzen, J. P.; Reynolds, K.; Sarma, P. K. S.; Stevenson, P. J.;
Thompson, N. J. Chem. Soc., Perkin Trans. 1 2002, 1, 69–79; (k) Huebner, S.; Jiao,
H.; Michalik, D.; Neumann, H.; Klaus, S.; Struebing, D.; Spannenberg, A.; Beller,
M. Chem. Asian J. 2007, 2, 720–733.
9. (a) Kukhar, V.; Hudson, H. Aminophosphonic and Aminophosphinic Acids:
Chemistry and Biological Activity; John Wiley & Sons, Ltd, 2000; (b) Collinsová,
M.; Jirácek, J. Curr. Med. Chem. 2000, 7, 629; (c) Kafarski, P.; Lejcak, B. Curr. Med.
Chem. 2001, 1, 301.
10. (a) Mandal, T.; Samanta, S.; Zhao, C.-G. Org. Lett. 2007, 9, 943; (b) Romanenko,
V. D.; Kukhar, V. P. Chem. Rev. 2006, 106, 3868–3935; (c) Kobayashi, S.;
Kiyohara, H.; Nakamura, Y.; Matsubara, R. J. Am. Chem. Soc. 2004, 126, 6558.
J5b ,5a = 9.0 Hz, C(50)–Hb 1H), 4.18 (s, C(4a)–H, 1H), 4.04 (s, C(4b)–H, 1H), 0.98
(s, 9H), 0.16 (s, 3H), 0.15 (s, 3H); 13C NMR (125 MHz, CDCl3) d: 186.18 (s, C@S),
153.20 (s, C(3)), 137.23 (s, Cq u), 129.46 (2 s, u), 129.01 (s, u), 126.01 (s, C(1)),
125.62 (s, u), 114.29 (s, C(4)), 95.10 (s, C(2)), 74.81 (s, C(50)), 62.04 (s, C(40)),
0
0
25.70 (s, t-Bu), 18.06 (s, Cq t-Bu), -4.73 (s, Me), ꢀ4.87 (s, Me); IR (NaCl,
m,
cmꢀ1): 2955, 1689, 1957, 1472, 1377, 1259, 1175; ESI MS m/z for C19H27NO2SSi
[M+H+]: 362.25 (18), 746.16 (100).
19. For
a detailed structural analysis (by NMR and X-ray diffraction) of
cycloadducts 5a–d, see Refs. 8b and 8d.
20. (a) Loupy, A.; Maurel, F.; Sabatie-Gogova, A. Tetrahedron 2004, 60, 1683–1691;
(b) Diaz-Ortiz, A.; Carrillo, J.; Cossio, F.; Gomez-Escalonilla, M.; de la Hoz, A.;
Moreno, A.; Prieto, P. Tetrahedron 2000, 56, 1569–1577; (c) Langa, F.; de la Cruz,
P.; de la Hoz, A.; Espildora, E.; Cossio, F.; Lecea, B. J. Org. Chem. 2000, 65, 2499–
2507.
21. We have shown in a previous paper (see Monbaliu, J.-C.; Tinant, B.; Marchand-
Brynaert, J. Heterocycles 2008, 75, 2459–2475) that oxazolidin-2-thione could
be (quantitatively) transformed into their oxazolidin-2-one analogues for
which several deprotection methods (to lead to corresponding primary amine)
have been reported. See: (a) Turconi, J.; Lebeau, L.; Paris, J.-M.; Mioskowski, C.
Tetrahedron 2006, 62, 8109–8114; (b) Fisher, J.; Duningan, J.; Hatfield, L.;
Hoying, R.; Ray, J.; Thomas, K. Tetrahedron Lett. 1993, 34, 4755–4758; (c) Katz,
S.; Bergmeier, S. Tetrahedron Lett. 2002, 43, 557–559.