The National Science Foundation (ECS-0621715 and
ECS-0524533) is acknowledged for support of this work.
Notes and references
1 J. V. Crivello, J. Polym. Sci., Part A: Polym. Chem., 1999, 37,
4241–4254.
2 S. Jeon, V. Malyarchuk, J. A. Rogers and G. P. Wiederrecht, Opt.
Express, 2006, 14, 2300–2308.
3 E. K. Kim, J. G. Ekerdt and C. G. Willson, J. Vac. Sci. Technol.,
B, 2005, 23, 1515–1520.
4 M. Goeppert-Mayer, Ann. Phys. (Paris), 1931, 9, 273.
5 D. A. Parthenopoulos and P. M. Rentzepis, Science, 1989, 245,
843–845.
6 K. D. Belfield and K. J. Schafer, Chem. Mater., 2002, 14,
3656–3662.
7 C. C. Corredor, Z. L. Huang and K. D. Belfield, Adv. Mater., 2006,
18, 2910.
Scheme 5 Synthesis of PAGs 18, 20 and 22, aD: 125 1C; MW: 100 W,
closed vessel, standard mode; 40 psi; 125 1C.
8 W. Denk, J. H. Strickler and W. W. Webb, Science, 1990, 248,
73–76.
9 K. J. Schafer-Hales, K. D. Belfield, S. Yao, P. K. Frederiksen,
J. M. Hales and P. E. Kolattukudy, J. Biomed. Opt., 2005, 10.
10 S. Maruo, O. Nakamura and S. Kawata, Opt. Lett., 1997, 22,
132–134.
11 K. D. Belfield, K. J. Schafer, Y. U. Liu, J. Liu, X. B. Ren and
E. W. Van Stryland, J. Phys. Org. Chem., 2000, 13, 837–849.
12 K. D. Belfield, X. B. Ren, E. W. Van Stryland, D. J. Hagan,
V. Dubikovsky and E. J. Miesak, J. Am. Chem. Soc., 2000, 122,
1217–1218.
13 K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van
Stryland and D. J. Hagan, J. Photochem. Photobiol., A, 2004, 162,
497–502.
Table 2 Microwave-assisted vs. conventional heating reaction times
for sulfonium salt PAG formation
Reagent
Product
MW Time (yield)
D Time (yield)
5
7
11
13
16
18
20
22
6 min (75%)
8 min (97%)
10 min (51%)
14 min (83%)
120 s (72%)
120 s (98%)
90 s (88%)
29 h (42%)
8 h (87%)
70 h (10%)
24 h (71%)
3 h (100%)a
3 h (97%)b
3 h (83%)
10
12
15
17
19
21
a
Literature value.27 b Literature value.19
14 T. Y. Yu, C. K. Ober, S. M. Kuebler, W. H. Zhou, S. R. Marder
and J. W. Perry, Adv. Mater., 2003, 15, 517–521.
15 P. Lidstrom, J. Tierney, B. Wathey and J. Westman, Tetrahedron,
2001, 57, 9225–9283.
16 P. Nilsson, K. Olofsson and M. Larhed, ‘‘Microwave-assisted and
Metal-catalyzed Coupling Reactions’’ in Microwave Methods in
Organic Synthesis, ed. M. Larhed and K. Olofsson, Springer,
Berlin, 2006, vol. 266, pp. 103–144.
17 K. R. Seipel, Z. H. Platt, M. Nguyen and A. W. Holland, J. Org.
Chem., 2008, 73, 4291–4294.
18 J. V. Crivello and J. H. W. Lam, Abstr. Pap. Am. Chem. Soc., 1978,
176, 8–8.
19 J. V. Crivello and J. H. W. Lam, J. Org. Chem., 1978, 43,
3055–3058.
20 K. D. Belfield, M. V. Bondar, O. V. Przhonska and K. J. Schafer,
Photochem. Photobiol. Sci., 2004, 3, 138–141.
21 J. L. Dektar and N. P. Hacker, J. Am. Chem. Soc., 1990, 112,
6004–6015.
22 J. L. Dektar and N. P. Hacker, J. Org. Chem., 1990, 55, 639–647.
23 G. Pohlers, J. C. Scaiano, R. Sinta, R. Brainard and D. Pai, Chem.
Mater., 1997, 9, 1353–1361.
24 C. C. Corredor, K. D. Belfield, M. V. Bondar, M. V. Przhonska,
F. E. Hernandez and O. V. Kachkovsky, J. Photochem. Photobiol.,
A, 2006, 184, 177–183.
reported in the literature. As in the previous precursors,
microwave heating significantly reduced reactions times for
the formation of these sulfonium salts when compared to
conventional heating times performed by us, 21, or reported
in the literature, 20 and 22 (Table 2).
The reactions that were carried out under conventional
conditions were performed in an oil bath heated to 125 1C
at atmospheric pressure; whereas the microwave-assisted reac-
tions were run at the same temperature in closed vessel mode,
reaching pressures no higher than 30 psi.
In every case, the reactions that were heated conventionally
took significantly longer than the analogous microwave reac-
tions, and microwave-assisted reaction yields were higher.
In conclusion, we have developed a new, more favorable
methodology for the formation of sulfonium salts via micro-
wave-assisted decomposition of diphenyliodonium salts in the
presence of diphenylsulfides. Microwave-assisted reaction
times were 90 to 420 times faster, resulting in generally higher
yields. We have also shown that the introduction of groups
that favor intersystem crossing is a viable means for increasing
the photoacid quantum yield of novel triarylsulfonium
salt PAGs.
25 R. S. Varma and R. K. Saini, Tetrahedron Lett., 1997, 38,
4337–4338.
26 K. D. Belfield, K. J. Schafer, W. Mourad and B. A. Reinhardt,
J. Org. Chem., 2000, 65, 4475–4481.
27 P. Beak and T. A. Sullivan, J. Am. Chem. Soc., 1982, 104,
4450–4457.
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 827–829 | 829