3320
Y. J. Kim et al. / Bioorg. Med. Chem. Lett. 17 (2007) 3317–3321
120
References and notes
100
80
60
40
20
0
1. Forstermann, U.; Schmidt, H. H.; Pollock, J. S.; Sheng,
H.; Mitchell, J. A.; Warner, T. D.; Nakane, M.; Murad, F.
Biochem. Pharmacol. 1991, 42, 1849.
2. Bredt, D. S.; Snyder, S. H. Proc. Natl. Acad. Sci. U.S.A.
1990, 87, 682.
3. Lowenstein, C. J.; Glatt, C. S.; Bredt, D. S.; Snyder, S. H.
Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 6711.
4. Cook, H. T.; Cattell, V. Clin. Sci. (Lond.) 1996, 91, 375.
5. Thiemermann, C.; Szabo, C.; Mitchell, J. A.; Vane, J. R.
Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 267.
iNOS
6. Halliwell, B. Lancet 1994, 344, 721.
7. Moore, W. M.; Webber, R. K.; Jerome, G. M.; Tjoeng, F.
S.; Misko, T. P.; Currie, M. G. J. Med. Chem. 1994, 37,
3886.
β
-actin
8. Hagen, T. J.; Bergmanis, A. A.; Kramer, S. W.; Fok, K.
F.; Schmelzer, A. E.; Pitzele, B. S.; Swenton, L.; Jerome,
G. M.; Kornmeier, C. M.; Moore, W. M.; Branson, L. F.;
Connor, J. R.; Manning, P. T.; Currie, M. G.; Hallinan, E.
A. J. Med. Chem. 1998, 41, 3675.
9. Moore, W. M.; Webber, R. K.; Fok, K. F.; Jerome, G.
M.; Kornmeier, C. M.; Tjoeng, F. S.; Currie, M. G.
Bioorg. Med. Chem. 1996, 4, 1559.
10. Bryk, R.; Wolff, D. J. Biochemistry 1998, 37, 4844.
11. Beaton, H.; Hamley, P.; Nicholls, D. J.; Tinker, A. C.;
Wallace, A. V. Bioorg. Med. Chem. Lett. 2001, 11, 1023.
12. Paesano, N.; Marzocco, S.; Vicidomini, C.; Saturnino, C.;
Autore, G.; De Martino, G.; Sbardella, G. Bioorg. Med.
Chem. Lett. 2005, 15, 539.
13. Raman, C. S.; Li, H.; Martasek, P.; Babu, B. R.; Griffith,
O. W.; Masters, B. S.; Poulos, T. L. J. Biol. Chem. 2001,
276, 26486.
LPS
Sample
-
+
+
+
+
+
+
6j
7a
7b
7c
7e
Figure 3. Effects of the prepared compounds on the expression of
iNOS mRNA in LPS-activated macrophages. RAW 264.7 cells were
treated for 6 h with compounds (10 lM) during LPS (1 lg/mL)
activation. The mRNA levels of iNOS and b-actin were determined
by RT-PCR from total RNA extracts. The relative iNOS mRNA levels
were normalized with the respective amounts of b-actin. Values
represent means SD of three independent densitometric analyses of
bands.
9-(2-chlorobenzyl)-9H-carbazole-3-carbaldehyde, was
reported as an inhibitor of iNOS mRNA expression
through a signaling pathway that does not involve NF-
jB pathway.22 The exact difference between the mecha-
nism of our compounds and that of the reported thioureas
and carbazole derivative was not explained in this report.
The study of the mechanism for the iNOS inhibition by
our compounds might be worthy to pursue further.
14. Hansel, T. T.; Kharitonov, S. A.; Donnelly, L. E.; Erin, E.
M.; Currie, M. G.; Moore, W. M.; Manning, P. T.;
Recker, D. P.; Barnes, P. J. FASEB J. 2003, 17, 1298.
15. Moeslinger, T.; Friedl, R.; Volf, I.; Brunner, M.; Baran,
H.; Koller, E.; Spieckermann, P. G. Kidney Int. 1999, 56,
581.
In conclusion, we prepared a series of urea and thiourea
derivatives and evaluated their inhibitory activities of
NO production in LPS-activated macrophages. They
suppressed the release of NO into culture media through
the suppression of iNOS protein and mRNA expression.
The SAR studies demonstrated that thiourea is superior
to urea and N3 substitution of thiourea with alkyl group
is highly beneficial for their activity. Further study of the
other biological activities related with the overproduc-
tion of NO, and the detailed mechanism for the activities
of these derivatives, is in progress. Our thiourea deriva-
tives that can control the expression of iNOS can be
good leads for the development of therapeutic agents
for the management of NO-related diseases.
16. Prabhakar, S. S.; Zeballos, G. A.; Montoya-Zavala, M.;
Leonard, C. Am. J. Physiol. 1997, 273, C1882.
17. Wang, W.; Jittikanont, S.; Falk, S. A.; Li, P.; Feng, L.;
Gengaro, P. E.; Poole, B. D.; Bowler, R. P.; Day, B. J.;
Crapo, J. D.; Schrier, R. W. Am. J. Physiol. Renal Physiol.
2003, 284, F532.
18. Goodyer, C. L. M.; Chinje, E. C.; Jaffar, M.; Stratford, I.
J.; Threadgill, M. D. Bioorg. Med. Chem. 2003, 11, 4189.
19. Shearer, B. G.; Lee, S.; Oplinger, J. A.; Frick, L. W.;
Garvey, E. P.; Furfine, E. S. J. Med. Chem. 1997, 40, 1901.
20. Green, L. C.; Wagner, D. A.; Glogowski, J.; Skipper, P.
L.; Wishnok, J. S.; Tannenbaum, S. R. Anal. Biochem.
1982, 126, 131.
21. Cell culture and nitrite assay in LPS-activated RAW 264.7
cells—cells in 10% fetal bovine serum (FBS)–DMEM,
were plated in 48-well plates (1 · 105 cells/mL) and then
incubated for 24 h. The cells were replaced with fresh
media with 1% FBS and then incubated for 20 h in the
presence or absence of test compounds with LPS (1 lg/
mL). NO production in each well was assessed by
measuring the accumulated nitrite in culture supernatant.
Samples (100 lL) of media were incubated with Griess
reagent (150 lL) for 10 min at room temperature in 96-
well microplate. Absorbance at 570 nm was read using an
ELISA plate reader. A standard calibration curve was
prepared using sodium nitrite as a standard. A dose–
response curve was prepared, and the results were typically
expressed as IC50 values.
Acknowledgment
This work was supported by the SRC program of
MOST/KOSEF (R11-2005-017, RESEARCH CEN-
TER FOR WOMEN’S DISEASES).
Supplementary data
Supplementary data associated with this article can be
22. Tsao, L. T.; Lee, C. Y.; Huang, L. J.; Kuo, S. C.; Wang, J.
P. Biochem. Pharmacol. 2002, 63, 1961.