Communications
Manaviazar, V. M. Delisser, Tetrahedron 1994, 50, 9181 – 9188;
e) L. Williams, Z. Zhang, F. Shao, P. J. Carroll, M. M. Joulli,
Tetrahedron 1996, 52, 11673 – 11694; f) J. S. Panek, C. E. Masse, J.
Org. Chem. 1998, 63, 2382 – 2384; g) M. Amador, X. Ariza, J.
Garcia, S. Sevilla, Org. Lett. 2002, 4, 4511 – 4515; h) N. Yoshikawa,
M. Shibasaki, Tetrahedron 2002, 58, 8289 – 8298.
we speculate that the reaction proceeds via a sterically
constrained five-membered transition state.
In conclusion, we have succeeded in developing a new
method for the preparation of anti-b-hydroxy-a-amino acids
from a-amino-b-keto esters by using the Ru–BINAP catalyst
in a dynamic kinetic resolution; this method provides the first
example of the anti-selective hydrogenation and four-step
access to the important (2R,3R)- and (2S,3S)-b-hydroxy-a-
amino acids from readily available acid anhydrides or acid
chlorides. Further studies to elucidate the reaction mecha-
nism and extend the scope of the method's synthetic utility
are in progress in our laboratory.
[2] For recent reports on the stereoselective synthesis of erythro-b-
hydroxy-a-amino acids, see: a) B. G. Jackson, S. W. Pedersen,
J. W. Fisher, J. W. Misner, J. P. Gardner, M. A. Staszak, C. Doecke,
J. Rizzo, J. Aikins, E. Farkas, K. L. Trinkle, J. Vicenzi, M.
Reinhard, E. P. Kreoeff, C. A. Higginbotham, R. J. Gazak, T. Y.
Zhang, Tetrahedron, 2000, 56, 5667 – 5677; b) A. Avenoza, C.
Cativiela, F. Corzana, J. M. Peregrina, M. M. Zurbano, Tetrahe-
dron: Asymmetry 2000, 11, 2195 – 2204; c) D. A. Evans, J. M.
Janey, N. Magomedov, J. S. Tedrow, Angew. Chem. 2001, 113,
1936 – 1940; Angew. Chem. Int. Ed. 2001, 40, 1884 – 1888; d) J. B.
MacMillan, T. F. Molinski, Org. Lett. 2002, 4, 1883 – 1886; e) T.
Ooi, M. Taniguchi, M. Kameda, K. Maruoka, Angew. Chem. 2002,
114, 4724 – 4726; Angew. Chem. Int. Ed. 2002, 41, 4542 – 4544.
[3] For the synthesis of b-hydroxy-a-amino acids by dynamic kinetic
resolution, see: a) R. Noyori, T. Ikeda, T. Ohkuma, M. Widhalm,
M. Kitamura, H. Takaya, S. Akutagawa, N. Sayo, T. Saito, T.
Taketomi, H. Kumobayashi, J. Am. Chem. Soc. 1989, 111, 9134 –
9135; b) J.-P. GenÞt, S. Mallart, S. JugØ, French Patent 8911159,
1989; c) K. Mashima, Y. Matsumura, K. Kusano, H. Kumobaya-
shi, N. Sayo, Y. Hori, T. Ishizaki, S. Akutagawa, H. Takaya, J.
Chem. Soc. Chem. Commun. 1991, 609; d) J.-P. GenÞt, C. Pinel, S.
Mallart, S. Juge, S. Thorimbert, J. A. Laffitte, Tetrahedron:
Asymmetry 1991, 2, 555 – 567; e) M. Kitamura, M. Tokunaga, R.
Noyori, J. Am. Chem. Soc. 1993, 115, 144 – 152; f) K. Mashima, K.
Kusano, N. Sato, Y. Matsumura, K. Nozaki, H. Kumobayashi, N.
Sayo, Y. Hori, T. Ishizaki, S. Akutagawa, H. Takaya, J. Org. Chem.
1994, 59, 3064 – 3076; g) J.-P. GenÞt, M. C. C. de Andrade, V.
Ratovelomanana-Vidal, Tetrahedron Lett. 1995, 36, 2063 – 2066;
h) E. Coulon, M. C. C. de Andrade, V. Ratovelomanana-Vidal, J.-
P. GenÞt, Tetrahedron Lett. 1998, 39, 6467 – 6470; i) K. Makino, N.
Okamoto, O. Hara, Y. Hamada, Tetrahedron: Asymmetry 2001,
12, 1757 – 1762.
[4] For dynamic kinetic resolution under transfer hydrogenation, see:
B. Mohar, A. Valleix, J.-R. Desmurs, M. Felemez, A. Wagner, C.
Mioskowski, Chem. Commun. 2001, 2572 – 2573.
[5] a) N. Okamoto, O. Hara, K. Makino, Y. Hamada, Tetrahedron:
Asymmetry 2001, 12, 1353 – 1358; b) ref. [3i]; c) K. Makino, Y.
Hennmi, Y. Hamada, Synlett 2002, 613 – 615; d) K. Makino, A.
Kondoh, Y. Hamada, Tetrahedron Lett. 2002, 43, 4695 – 4698;
e) N. Okamoto, O. Hara, K. Makino, Y. Hamada, J. Org. Chem.
2002, 67, 9210 – 9215; f) K. Makino, T. Suzuki, S. Awane, O. Hara,
Y. Hamada, Tetrahedron Lett. 2002, 43, 9391 – 9395.
[6] For reviews on dynamic kinetic resolution, see: a) R. Noyori, M.
Tokunaga, M. Kitamura, Bull. Chem. Soc. Jpn. 1995, 68, 36 – 56;
b) R. S. Ward, Tetrahedron: Asymmetry 1995, 6, 1475 – 1490; c) T.
Ohkuma, M. Kitamura, R. Noyori in Catalytic Asymmetric
Synthesis, 2nd ed. (Ed.: I. Ojima), Wiley-VCH, 2000, pp. 1 – 110;
d) H. Pellissier, Tetrahedron 2003, 59, 8291 – 8327.
Experimental Section
Typical procedure: DMF (400 mL) was added to a mixture of
[{RuCl2(C6H6)}2] (9.8 mg, 19.6 mmol) and (S)-BINAP (26.4 mg,
42.4 mmol) in a Schlenk tube under an argon atmosphere. After
being degassed, the mixture was stirred for 10 min at 1008C. The
resulting mixture was cooled and concentrated in vacuo at 508C for
2.5 h to give the reddish-brown catalyst. A degassed solution of a-
amino-b-ketoester 8 (R1 = iPr, R2 = Bn, 271.5 mg, 1.0 mmol) in
CH2Cl2 (1 2.5 mL, 1 0.5 mL) was added dropwise to the catalyst
through a canula under an argon atmosphere. The mixture was stirred
at 508C under hydrogen (100 atm) for 6 h. The solvent was removed
in vacuo to afford a-amino-b-hydroxy ester 9 which was used in the
next step without further purification.
Benzoyl chloride (130 mL, 1.12 mmol) and triethylamine (440 mL,
0.316 mmol) were added dropwise to a solution of the crude 9 in THF
(2.0 mL) at 08C. After stirring for 1 h at 238C, the reaction mixture
was quenched with water and diluted with ethyl acetate/n-hexane
(5:1). The mixture was washed with aqueous 1n HCl, water, saturated
aqueous NaHCO3, and brine, dried with Na2SO4, and filtered. The
filtrate was then concentrated in vacuo. The residue was purified by
silica gel column chromatography (ethyl acetate/n-hexane (1:2)) to
give 10 (278.1 mg, 0.815 mmol, 82% yield (2 steps), > 99% de,
98% ee): HPLC analysis with a Chiralcel OD-H chiral column
(eluent = n-hexane/iPrOH (90:10, 0.5 mLminÀ1)): retention time for
(2R,3R)-10 = 21.6 min, for (2S,3S)-10 = 30.3 min; [a]2D4 = + 33.9 (c =
1.00, CHCl3); m.p. 95.5–968C; IR (KBr): n˜ = 3414, 2961, 2935, 2858,
1
1749, 1647, 1519, 1192, 1064 cmÀ1; H NMR (400 MHz, CDCl3): d =
0.95 (d, J = 6.6 Hz, 3H; (CH3)2CH), 1.13 (d, J = 6.6 Hz, 3H;
(CH3)2CH), 1.71 (m, 1H; (CH3)2CH), 2.92 (d, J = 8.4 Hz, 1H;
CHOH), 3.63 (dt, J = 3.1, 8.4 Hz, 1H; CHOH), 4.99 (dd, J = 3.3,
7.3 Hz, 1H; CHNH), 5.23 (d, J = 12 Hz, 1H; CH2Ph), 5.29 (d, J =
12 Hz, 1H; CH2Ph), 7.14 (d, J = 7.3 Hz, 1H; CHNH), 7.34–7.39 (m,
5H; ArH), 7.43–7.47 (m, 2H; ArH), 7.52–7.56 (m, 1H; ArH), 7.81–
7.83 ppm (m, 2H; ArH); 13C NMR (100 MHz, CDCl3): d = 18.9, 19.0,
31.5, 56.2, 67.6, 78.9, 127.2, 128.4, 128.6, 128.7, 132.0, 133.4, 134.9,
167.5, 170.8 ppm; HRMS (FAB, NBA): calcd for C20H24NO4:
342.1705 [M+ + 1]; found: 342.1682; elemental analysis: calcd for
C20H23NO4: C 70.36, H 6.79, N 4.10; found: C 70.26, H 6.82, N 4.06.
[7] O. Hara, M. Ito, Y. Hamada, Tetrahedron Lett. 1998, 39, 5537 –
5540.
[8] J. Singh, T. D. Gordon, W. G. Earley, B. A. Morgan, Tetrahedron
Lett. 1993, 34, 211 – 214.
[9] To optimize the cyclopentyl substrate, the catalyst derived from
[(cod)Ru(methallyl)2] (cod = cycloocta-1,5-diene) and (S)-
BINAP was examined and was found to be less effective (34%
yield, 93:7 d.r., 92% ee) than the one from [{RuCl2(C6H6)}2] and
(S)-BINAP.
Received: October 13, 2003 [Z53072]
Keywords: amino acids · asymmetric synthesis · hydrogenation ·
.
kinetic resolution · ruthenium
[1] For representative reports on the synthesis of (2S, 3S)- and (2R,
3R)-3-hydroxyleucine, see: a) C. G. Caldwell, S. S. Bondy, Syn-
thesis 1990, 34 – 36; b) E. J. Corey, D.-H. Lee, S. Choi, Tetrahedron
Lett. 1992, 33, 6735 – 6738; c) S. Kanemasa, T. Mori, A. Tatsu-
kawa, Tetrahedron Lett. 1993, 34, 8293 – 8296; d) K. J. Hale, S.
884
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2004, 43, 882 –884