A. Alizadeh et al. / Tetrahedron Letters 50 (2009) 1533–1535
1535
S
CHCO2R1
O
R
S
N
H
O
S
S
CS2
2
R
RNH2
-R1OH
N
S
CHCO2R1
S
H2
N
R
3
OR1
4
5
Scheme 2.
5CH of Ph). 13C NMR (125.7 MHz, CDCl3): dC = 47.38 (OMe), 52.86 (CH2Ph),
116.94 (C@CH), 128.33 (CH of Ph), 128.68 (2CH of Ph), 128.97 (2CH of Ph), 134.40
(Cipso), 142.06 (C@CH), 165.52 (CON), 166.54 (CO2Me), 195.49 (C@S). MS (EI), m/z
(%): 293 (M+, 19), 261 (9), 148 (22), 117 (9), 105 (9), 91 (100), 77 (8), 65 (26), 43
(15). Anal. Calcd for C13H11NO3S2 (293.35): C, 53.23; H, 3.78; N, 4.77. Found: C,
53.00; H, 3.75; N, 4.70. Compound 3b: methyl2-[3-(1-methyl-2-phenylethyl)-4-
oxo-2-thioxo-1,3-thiazolidin-5-yliden]ethanoate. Yield: 0.26 g (85%); yellow
The 1H NMR spectrum of 3a exhibited three sharp singlets read-
ily recognized as arising from the methoxy group (d = 3.89), meth-
ylene (d = 5.30) protons, and the vinylic CH at 6.86 ppm. The
phenyl moiety gave rise to characteristic signals in the aromatic re-
gion of the spectrum. The 1H-decoupled 13C NMR spectrum of 3a
showed 11 distinct resonances in agreement with the structure
of methyl 2-(4-oxo-3-(phenylmethyl)-2-thioxo-1,3-thiazolidin-5-
ylidene)ethanoate. The geometry of the exocyclic double bond
was not determined.
powder; mp = 89–91 °C. IR (KBr) (
m
max, cmÀ1): 1721 (C@O), 1689 (C@C), 1323
3
and 1196 (C@S). 1H NMR (500.13 MHz, CDCl3): dH = 1.94 (3H, d, JHH = 7.2 Hz,
CH3), 3.87 (3H, s, OMe), 6.50 (1H, q, 3JHH = 7.2 Hz, MeCH), 6.71 (1H, s, C@CH), 7.33
(1H, t, 3JHH = 6.3 Hz, CHpara of Ph), 7.36 (2H, t, 3JHH = 7.6 Hz, 2 CHmeta of Ph), 7.46
3
(2H, d, JHH = 7.5 Hz, 2CHortho of Ph). 13C NMR (125.7 MHz, CDCl3): dC = 15.39
Although we have not established the mechanism of the reac-
tion between the amines and carbon disulfide in the presence of
DAAD in an experimental manner, a possible explanation is pro-
posed in Scheme 2. Compound 3 could result from the initial addi-
tion of the amine to carbon disulfide and subsequent attack of the
resulting reactive alkylammoniumcarbodithioate 410 on the acety-
lenic ester to yield intermediate 5. Cyclization of the intermediate
5 and subsequent loss of R1OH lead to compound 3 (Scheme 2).
In summary, we have reported a one-pot method that is effec-
tive and simple for the synthesis of rhodanine derivatives of poten-
tial pharmacological and biological interest using commercially
available starting materials and water as the reaction medium.11
(CH3), 52.80 (phCH), 54.97(OMe), 116.37 (C@CH), 127.57(2CHof Ph), 128.09 (CH
of Ph), 128.46 (2CH of Ph), 137.8 (Cipso), 141.50 (C@CH), 165.56 (CON), 165.91
(CO2Me), 196.39 (C@S). MS (EI), m/z (%): 307 (M+, 59), 275 (18), 204 (2), 162 (28),
105 (100), 85 (4), 77 (8), 59 (7), 51 (3). Anal. Calcd for C14H13NO3S2 (307.38): C,
54.71; H, 4.26; N, 4.56. Found: C, 54.50; H, 4.30; N, 4.50. Compound 3c: methyl 2-
[3-((2-chlorophenyl)methyl)-4-oxo-2-thioxo-1,3-thiazolidin-5-yliden]etha-
noate. Yield: 0.28 g (85%); yellow powder; mp = 112–114 °C. IR (KBr) (mmax
,
cmÀ1): 1716 (C@O), 1685 (C@C), 1330 and 1212 (C@S). 1H NMR (500.13 MHz,
CDCl3): dH = 3.90 (3H, s, OMe), 5.42 (2H, s, ArCH2), 6.90 (1H, s, C@CH), 6.92 (1H, t,
3
3JHH = 7.0 Hz, CH of Ar), 7.20 (1H, t, JHH = 6.6 Hz, CH of Ar), 7.23 (1H, d,
3JHH = 7.4 Hz, CH of Ar), 7.41 (1H, d, 3JHH = 7.4 Hz, CH of Ar). 13C NMR (125.7 MHz,
CDCl3): dC = 44.85 (OMe), 52.1 (ArCH2), 117.29 (C@CH), 126.98 (CH of Ar), 127.13
(CH of Ar), 129 (CH of Ar), 129.86 (CH of Ar), 131.45 (Cipso-Cl), 132.96 (Cipso-CH2),
141.86 (C@CH), 165.52 (CON), 166.29 (CO2Me), 195.14 (C@S). MS (EI), m/z (%):
327 (M+, 2), 292 (100), 264 (7), 182 (5), 148 (12), 125 (28), 105 (7), 89 (18), 77 (4),
59 (5), 45 (4). Anal. Calcd for C13H10ClNO3S2 (327.80): C, 47.63; H, 3.07; N, 4.27.
Found: C, 47.00; H, 3.10; N, 4.20. Compound 3d: ethyl 2-[3-((2-
chlorophenyl)methyl)-4-oxo-2-thioxo-1,3-thiazolidin-5-yliden]ethanoate.
References and notes
Yield: 0.29 g (86%); yellow powder; mp = 104–106 °C. IR (KBr) (
m
max, cmÀ1):
1711 (C@O), 1683 (C@C), 1335 and 1192 (C@S). 1H NMR (500.13 MHz, CDCl3):
1. Sing, W. T.; Lee, C. L.; Yeo, S. L.; Lim, S. P.; Sim, M. M. Bioorg. Med. Chem. Lett.
2001, 11, 91–94.
3
3
dH = 1.37 (3H, t, JHH = 7.2 Hz, OCH2CH3), 4.34 (2H, q, JHH = 7.2 Hz, OCH2CH3),
5.41 (2H, s, ArCH2), 6.88(1H, s, C@CH), 6.90 (1H, d, 3JHH = 7.6 Hz, CH of Ar), 7.18
2. Grant, E. B.; Guiadeen, D.; Baum, E. Z.; Foleno, B. D.; Jin, H.; Montenegro, D. A.;
Nelson, E. A.; Bush, K.; Hlasta, D. J. Bioorg. Med. Chem. Lett. 2000, 10, 2179–2182.
3. Orchard, M. G.; Neuss, J. C.; Galley, C. M. S.; Carr, A.; Porter, D. W.; Smith, P.;
Scopes, D. I. C.; Haydon, D.; Vousden, K.; Stubberfield, C. R.; Young, K.; Page, M.
Bioorg. Med. Chem. Lett. 2004, 14, 3975–3978.
4. (a) Cutshall, N. S.; O’Day, C.; Prezhdo, M. Bioorg. Med. Chem. Lett. 2005, 15,
3374–3379; (b) Ahn, J. H.; Kim, S. J.; Park, W. S.; Cho, S. Y.; Ha, J. D.; Kim, S. S.;
Kang, S. K.; Jeong, D. G.; Jung, S.-K.; Lee, S.-H.; Kim, H. M.; Park, S. K.; Lee, K. H.;
Lee, C. W.; Ryu, S. E.; Choi, J.-K. Bioorg. Med. Chem. Lett. 2006, 16, 2996–2999.
5. (a) Lohray, B. B.; Bhushan, V.; Rao, P. B.; Madhavan, G. R.; Murali, N.; Rao, K. N.;
Reddy, K. A.; Rajesh, B. M.; Reddy, P. G.; Chakrabarti, R.; Rajagopalan, R. Bioorg.
Med. Chem. Lett. 1997, 7, 785–788; (b) Singh, S. P.; Parmar, S. S.; Raman, K.;
Stenberg, V. I. Chem. Rev. 1981, 81, 175–203; (c) Lee, C. L.; Sim, M. M.
Tetrahedron Lett. 2000, 41, 5729–5732; (d) Brown, F. C. Chem. Rev. 1961, 61,
463–521; (e) Rudorf, W.-D.; Schwarz, R. Heterocycles 1986, 24, 3459–3463; (f)
Khodair, A. I.; Nielsen, J. Heterocycles 2002, 57, 1017–1032.
6. (a) Alizadeh, A.; Rostamnia, S.; Zhu, L. G. Tetrahedron 2006, 62, 5641; (b)
Alizadeh, A.; Rostamnia, S.; Hu, M. L. Synlett 2006, 1592; (c) Alizadeh, A.;
Rostamnia, S.; Esmaili, A. A. Synthesis 2007, 709; (d) Alizadeh, A.; Oskueyan, Q.;
Rostamnia, S. Synthesis 2007, 2637.
7. (a) Alizadeh, A.; Movahedi, F.; Masrouri, H.; Zhu, L. G. Synthesis 2006, 3431; (b)
Alizadeh, A.; Movahedi, F.; Esmaili, A. A. Tetrahedron Lett. 2006, 47, 4469.
8. Liu, J.; Zhou, Y.; Wu, Y.; Li, X.; Chan, A. S. C. Tetrahedron: Asymmetry 2008, 19,
832–837.
3
3
(1H, t, JHH = 7.4 Hz, CH of Ar), 7.23 (1H, t, JHH = 7.7 Hz, CH of Ar), 7.4 (1H, d,
3JHH = 7.8 Hz, CH of Ar). 13C NMR (125.7 MHz, CDCl3): dC = 14.15 (OCH2CH3),
45.10 (OCH2CH3), 62.23 (ArCH2), 117.90 (C@CH), 126.97, 127.11, 128.98 and
129.86 (4 CH of Ar), 131.50 (Cipso-Cl), 132.98 (Cipso-CH2), 141.50 (C@CH), 165.04
(CON), 166.35 (CO2Et), 195.32 (C@S). MS (EI), m/z (%): 342 (M++1, 2), 341 (M+, 2),
306 (100), 278 (26), 182 (6), 148 (7), 125 (26), 89 (14), 63 (4), 53 (4). Anal. Calcd
for C14H12ClNO3S2 (341.83): C, 49.19; H, 3.54; N, 4.10. Found: C, 49.50; H, 3.50; N,
4.00. Compound 3e: methyl 2-[3-(1-methylethyl)-4-oxo-2-thioxo-1,3-
thiazolidin-5-yliden]ethanoate. Yield: 0.20 g (82%); yellow oil; IR (KBr) (mmax
,
cmÀ1): 1725 (C@O), 1670 (C@C), 1315 and 1196 (C@S). 1H NMR (500.13 MHz,
CDCl3): dH = 1.54 (6H, d, 3JHH = 7.0 Hz, CHMe2), 3.88 (3H, s, OMe), 5.20 (1H, sep,
3JHH = 7.0 Hz, CHMe2), 6.77 (1H, s, C@CH). 13C NMR (125.7 MHz, CDCl3):
dC = 18.47 (CHMe2), 46.31 (CHMe2), 50.10 (OMe), 115.93 (C@CH), 141.78
(C@CH), 165.62 (CON), 167.59 (CO2Me), 197.44 (C@S). MS (EI), m/z (%): 245
(M+, 76), 227 (15), 213 (26), 185 (14), 153 (22), 117 (100), 100 (78), 90 (42), 59
(40), 43 (42). Anal. Calcd for C9H11NO3S2 (245.31): C, 44.07; H, 4.52; N, 5.71.
Found: C, 44.00; H, 4.40; N, 5.75. Compound 3f: methyl 2-[3-(2-methylpropyl)-
4-oxo-2-thioxo-1,3-thiazolidin-5-yliden]ethanoate. Yield: 0.23 g (88%); yellow
powder; mp = 88–90 °C. IR (KBr) (
m
max, cmÀ1): 1715 (C@O), 1691 (C@C), 1325
and 1219 (C@S). 1H NMR (500.13 MHz, CDCl3): dH = 0.93 (6H, d, JHH = 6.7 Hz,
CH2CHMe2), 2.25–2.31 (1H, m, CH2CHMe2), 3.87 (3H, s, OMe), 3.93 (2H, d,
3JHH = 7.5 Hz, CH2CHMe2), 6.82 (1H, s, C@CH). 13C NMR (125.7 MHz, CDCl3):
dC = 20.06 (CH2CHMe2), 26.9 (CH2CHMe2), 51.29 (OMe), 52.78 (CH2CHMe2),
116.58 (C@CH), 142.03 (C@CH), 165.55 (CON), 166.89 (CO2Me), 196.11 (C@S).
MS (EI), m/z (%): 259 (M+, 2), 228 (14), 204 (48), 172 (16), 113 (18), 85 (38), 72
(34), 57 (86), 41 (100). Anal. Calcd for C10H13NO3S2 (259.34): C, 46.31; H, 5.05; N,
5.40. Found: C, 46.50; H, 5.00; N, 5.35. Compound3g:methyl2-[3-(3-butenyl)-4-
oxo-2-thioxo-1,3-thiazolidin-5-yliden]acetate. Yield: 0.19 g (80%); orange
3
9. Gabillet, S.; Lecercle, D.; Loreau, O.; Carboni, M.; Dezard, S.; Gomis, J.-M.; Taran,
F. Org. Lett. 2007, 9, 3925–3927.
10. (a) Azizi, N.; Aryanasab, F.; Torkiyan, L.; Ziyaei, A.; Saidi, M. R. J. Org. Chem.
2006, 71, 3634; (b) Azizi, N.; Ebrahimi, F.; Aakbari, E.; Aryanasab, F.; Saidi, M. R.
Synlett 2007, 2797–2800; (c) Azizi, N.; Pourhasan, B.; Aryanasab, F.; Saidi, M. R.
Synlett 2007, 1239–1242.
powder; mp = 140–142 °C. IR (KBr) (m
max, cmÀ1): 1716 (C@O), 1683 (C@C),
1331 and 1199 (C@S). 1H NMR (500.13 MHz, CDCl3): dH = 3.88 (3 H, s, OMe),
4.71–4.72 (2H, m, CH2CH@CH2), 5.25–5.30 (2H, m, CH2CH@CH2), 5.75–5.90 (1H,
m, CH2CH@CH2), 6.84 (1H, s, C@CH). 13C NMR (125.7 MHz, CDCl3): dC = 46.19
(OMe), 52.83 (CH2CH@CH2), 116.84 (C@CHCO2Me), 119.78 (CH2CH@CH2), 129.2
(CH2CH@CH2), 142.08 (C@CHCO2Me), 165.52 (CON), 166.14 (CO2Me), 195.15
(C@S). MS (EI), m/z (%): 243 (M+, 47), 228 (100), 116 (28), 98 (25), 85 (79), 72 (32),
59 (26), 43 (61), 41 (79). Anal. Calcd for C9H9NO3S2 (243.29): C, 44.43; H, 3.73; N,
5.76. Found: C, 44.50; H, 3.60; N, 5.60.
11. Typical procedure for the preparation of methyl 2-[4-oxo-3-(phenylmethyl)-2-
thioxo-1,3-thiazolidin-5-yliden)ethanoate 3a: Benzylamine (1 mmol) was added
slowly to a mixture of CS2 (1.2 mmol) and dimethyl acetylenedicarboxylate
(1 mmol) in 3 ml of water at room temperature. The reaction mixture was stirred
for1 h. After completion ofthe reaction, theresulting solidwas filteredand dried.
Yield: 0.26 g (90%); orange powder; mp = 128–130 °C. IR (KBr) (m
max, cmÀ1):
1713 (C@O), 1680 (C@C), 1342 and 1187 (C@S). 1H NMR (500.13 MHz, CDCl3):
dH = 3.89 (3H, s, OMe), 5.30 (2H, s, CH2Ph), 6.86(1H, s, C@CH), 7.33–7.45 (5H, m,