J . Org. Chem. 1998, 63, 3423-3428
3423
Tita n iu m -Ca ta lyzed , Asym m etr ic Su lfoxid a tion of Alk yl Ar yl
Su lfid es w ith Op tica lly Active Hyd r op er oxid es
Waldemar Adam, Marion N. Korb,* Konrad J . Roschmann,† and Chantu R. Saha-Mo¨ller
Institute of Organic Chemistry, University of Wu¨rzburg, Am Hubland, D-97218 Wu¨rzburg, Germany
Received February 10, 1998
The Ti-catalyzed, asymmetric oxidation of alkyl aryl sulfides by enantiomerically pure hydroper-
oxides (ee >99%) has been examined. Enantioselectivities with ee values up to ca. 80% were
achieved for the oxygen transfer from (S)-(-)-1-phenylethyl hydroperoxide 2a to methyl phenyl
and methyl p-tolyl sulfide 1a in CCl4 as solvent, but with much overoxidation to the corresponding
sulfone 4. Detailed mechanistic studies showed that the enantioselectivity of the sulfide 1a oxidation
results from a combination of a rather low (ee values <20%) asymmetric induction in the
sulfoxidation and an effective kinetic resolution (ee values ca. 80% at 85% sulfide conversion) of
the sulfoxide 3a by enantioselective oxidation to the sulfone 4a . The overoxidation (loss of
chemoselectivity) is due to sulfoxide coordination to the Ti metal to generate a template in which
the oxygen atom is intramolecularly transferred from the bound and activated, optically active
hydroperoxide to the ligated sulfoxide in a stereocontrolled manner.
In tr od u ction
titanium-containing complexes are known. For the lat-
ter, Kagan9 optimized their Sharpless-modified titanium-
catalyzed sulfoxidation [cumyl hydroperoxide/Ti(OiPr)4/
(+)-DET/iPrOH ) 5:1:4:4] to achieve enantiomeric excesses
up to 96% for alkyl aryl sulfides. Recently Scettri10
employed furyl hydroperoxides (ee values up to >95%)
instead of cumyl hydroperoxide, while Modena11 intro-
duced a nonracemic amino triol as chiral ligand (ee up
to 84%). Uemura12 utilized (R)-binaphthol as chiral
auxiliary, which not only oxidizes sulfides, but also
promotes the kinetic resolution of sulfoxides. The latter
has also been observed for (S,S)-1,2-diphenylethane-1,2-
diol13 and for amino triol11 as chiral auxiliaries.
Optically active sulfoxides have been increasingly used
as building blocks and chiral auxiliaries in the asym-
metric synthesis of pharmaceutical products;1 therefore,
their enantioselective preparation is still of importance
today. The main route to nonracemic sulfoxides consti-
tutes the Andersen method,2 namely the reaction of
diastereomerically pure sulfinates with organometallic
reagents. Alternatively, the asymmetric oxidation of
sulfides has received much attention during the past 15
years. The use of chiral oxaziridines3 as oxidants or the
Sharpless-modified procedures of Modena4 and Kagan5
led to high enantioselectivities (up to ee 90%), but the
sulfoxidations have been conducted stoichiometrically
with respect to Ti(OiPr)4 and the chiral auxiliary. Of
paramount interest is, therefore, the development of
efficient catalytic systems.
In such catalytic, enantioselective oxidations, the
asymmetric induction is exercised by a chiral diol ligand,
e.g., tartrate or binaphthol, in combination with an
achiral hydroperoxide as the oxygen donor. First at-
tempts to use optically active sugar-derived hydroperox-
ides for the asymmetric sulfoxidation have been made
for alkyl aryl sulfides, but only low ee values (up to 26%)
were obtained for the sulfoxide.14 In the following we
report the Ti-catalyzed asymmetric oxidation of methyl
p-tolyl sulfide 1a (Scheme 1) with optically active hydro-
In this context, besides the highly enantioselective
enzyme-catalyzed sulfoxidations,6 catalyzed sulfoxida-
tions with (salen)manganese,7 (salen)vanadium,8 and
† Undergraduate research participant, Spring 1997.
(1) (a) Mata, E. G. Phosphorus Sulfur Silicon 1996, 117, 231-286.
(b) Kagan, H. B.; Rebiere, F.; Samuel, O. Phosphorus Sulfur Silicon
1991, 58, 89-110. (c) Carren˜o, M. C. Chem. Rev. 1995, 95, 1717-1760.
(2) (a) Anderson, K. K. Tetrahedron Lett. 1962, 93-95. (b) Rebiere,
F.; Samuel, O.; Ricard, L.; Kagan, H. B. J . Org. Chem. 1991, 56, 5991-
5999. (c) Whitesell, J . K.; Wong, M.-S. J . Org. Chem. 1994, 59, 597-
601.
(7) (a) Palucki, M.; Hanson, P.; J acobsen, E. N. Tetrahedron Lett.
1992, 33, 7111-7114. (b) Noda, K.; Hosoya, N.; Yanai, K.; Irie, R.;
Katsuki, T. Tetrahedron Lett. 1994, 35, 1887-1890.
(8) (a) Nakajima, K.; Kojima, M.; Fujita, J . Chem. Lett. 1986, 1483-
1486. (b) Bolm, C.; Bienewald, F. Angew. Chem., Int. Ed. Engl. 1995,
34, 2883.
(3) (a) Davis, F. A.; McCauley, J . P., J r.; Chattopadhyay, S.; Harakal,
M. E.; Towson, J . C.; Watson, W. H.; Tavanaiepour, I. J . Am. Chem.
Soc. 1987, 109, 3370-3377. (b) Davis, F. A.; Thimma Reddy, R.;
Weismiller, M. C. J . Am. Chem. Soc. 1989, 111, 5964-5965. (c) Davis,
F. A.; Thimma Reddy, R.; Han, W.; Carroll, P. J . J . Am. Chem. Soc.
1992, 114, 1428-1437.
(4) Di Furia, F.; Modena, G.; Seraglia, R. Synthesis 1984, 325-327.
(5) (a) Pitchen, P.; Kagan, H. B. Tetrahedron Lett. 1984, 25, 1094-
1052. (b) Pitchen, P.; Dun˜ach, E.; Deshmukh, M. N.; Kagan, H. B. J .
Am. Chem. Soc. 1984, 106, 8188-8193. (c) Zhao, S. H.; Samuel, O.;
Kagan, H. B. Tetrahedron 1987, 43, 5135-5144. (d) Brunel, J .-M.;
Diter, P.; Duetsch, M.; Kagan, H. B. J . Org. Chem. 1995, 60, 8086-
8088.
(9) (a) Brunel, J .-M.; Kagan, H. B. Synlett 1996, 404-406. (b)
Brunel, J .-M.; Kagan, H. B. Bull. Soc. Chim. Fr. 1996, 133, 1109-
1115.
(10) (a) Scettri, A.; Bonadies, F.; Lattanzi, A. Tetrahedron: Asym-
metry 1996, 7, 629-632. (b) Lattanzi, A.; Bonadies, F.; Scettri, A. Tetra-
hedron: Asymmetry 1997, 8, 2141-2151. (c) Lattanzi, A.; Bonadies,
F.; Senatore, A.; Soriente, A.; Scettri, A. Tetrahedron: Asymmetry 1997,
8, 2473-2478.
(11) Di Furia, F.; Licini, G.; Modena, G.; Motterle, R.; Nugent, W.
A. J . Org. Chem. 1996, 61, 5175-5177.
(12) (a) Komatsu, N.; Hashizume, M.; Sugita, T. Uemura, S. J . Org.
Chem. 1993, 58, 4529-4533. (b) Komatsu, N.; Hashizume, M.; Sugita,
T. Uemura, S. J . Org. Chem. 1993, 58, 7624-7626.
(13) Superchi, S.; Rosini, C. Tetrahedron: Asymmetry 1997, 8, 349-
352.
(14) Hamann, H.-J .; Ho¨ft, E.; Mostowicz, D.; Mishnev, A.; Urbanczyk-
Lipkowska, Z.; Chmielewski, M. Tetrahedron 1997, 53, 185-192.
(6) (a) Fu, H.; Kondo, H.; Ichikawa, Y.; Look, G. C.; Wong, C.-H. J .
Org. Chem. 1992, 57, 7265-7270. (b) Ottolina, G.; Pasta, P.; Carrea,
G.; Colonna, S.; Dallavalle, S.; Holland, H. L. Tetrahedron: Asymmetry
1995, 6, 1375-1386.
S0022-3263(98)00243-6 CCC: $15.00 © 1998 American Chemical Society
Published on Web 04/22/1998