2016
J. H. Jung et al. / Tetrahedron Letters 50 (2009) 2013–2016
17. (a) Aoki, L.; Sakaki, T.; Shinkai, S. J. Chem. Soc., Chem. Commun. 1992, 730; (b)
Jin, T.; Ichikawa, K.; Koyama, T. J. Chem. Soc., Chem. Commun. 1992, 499; (c) Ji,
H.-F.; Brown, G. M.; Dabestani, R. Chem. Commun. 1999, 609; (d) Kim, J. S.; Noh,
K. H.; Lee, S. H.; Kim, S. K.; Kim, S. K.; Yoon, J. J. Org. Chem. 2003, 68, 597.
18. Leray, I.; Lefevre, J. P.; Delouis, J. F.; Delaire, J.; Valeur, B. Chem. Eur. J. 2001, 7,
4590.
19. (a) Birks, J. B. Photophysics of Aromatic Molecules; Wiley-Interscience: London,
1970; (b) Lee, S. H.; Kim, S. H.; Kim, S. K.; Jung, J. H.; Kim, J. S. J. Org. Chem. 2005,
70, 9288.
20. Hecht, S.; Vladimirov, N.; Fréchet, J. M. J. J. Am. Chem. Soc. 2001, 123, 18.
21. (a) Tsien, R. Y.; Miyawaki, A. Science 1998, 280, 1954–1955; (b) Weiss, S. Science
1999, 283, 1676.
22. Stryer, L.; Haugland, R. P. Proc. Natl. Acad. Sci. U.S.A. 1967, 58, 719.
23. Unless otherwise noted, reagents were obtained from commercial suppliers
and used without further purification. Melting points were taken in evacuated
and sealed capillary tubes with a Mel-Temp apparatus and were uncorrected.
IR spectra were recorded on a Nicolet Impact 400 FT-IR spectrometer. 1H and
13C NMR spectra were recorded with
Chemical shifts are recorded in parts per million relative to TMS as an
internal standard.
a Bruker AMX 400 spectrometer.
Figure 6. MALDI–TOF Mass spectrum of 7ꢁCu2+
.
N-(1-naphthalenemethyl)chloroacetamide (2). To
a suspension of 1-napht-
halenemethylamine (300 mg, 1.91 mmol) and potassium carbonate (1.10 g,
7.64 mmol) in a mixture of water (50 mL) and ethyl acetate (50 mL), a solution
of chloroacetyl chloride (0.25 mL, 3.14 mmol) in ethyl acetate (10 mL) was
added dropwise. After the reaction mixture was stirred at room temperature
for 2 h, organic phase was separated and dried over anhydrous magnesium
sulfate. The residue obtained by evaporation of solvent was triturated with
hexane to afford 440 mg (98%) as a colorless crystalline solid. mp 120 °C; 1H
NMR (400 MHz, CDCl3) d 8.00–7.44 (m, 7, ArH), 6,82 (br. s, 1, NH), 4.95 (d, 2,
CH2, J = 5.6 Hz), 4.11 (s, 2, CH2); 13C NMR (125 MHz, CDCl3) d 165.79 (C@O),
134.10, 132.73, 131.52, 129.17, 129.11, 127.06, 126.98, 126.34, 125.61, 123.40
(Ar), 42.80, 42.20 (CH2). Anal. Calcd for C13H12NOCl: C, 66.81; H, 5.18. Found. C,
66.89; H, 5.17.
For the binding mode between 7 and Cu2+ ion, MALDI-TOF Mass
analysis was carried out. A peak at 1789.6 m/z corresponding to
7ꢁCu2+ was observed by addition of excess Cu(ClO4)2 to 7 as seen
in (Fig. 6). We then noticed that the Cu2+ ion is coordinated by 7
with an 1:1 stoichiometry.
In conclusion, FRET-based fluorometric tetrahomodioxaca-
lix[4]arene 7 has been newly synthesized. Derivative 7 exhibits a
weak naphthalene emission and a strong pyrene emission to pro-
vide a FRET-On due to an energy transfer event from naphthalene
to pyrene unit. Complexation with Cu2+ increases the naphthalene
emission along with decreases in the excimer emission of 7 be-
cause of the FRET-Off. With respect to the extent of FRET changes,
we could observe the Cu2+ selectivity of 7 over other metal ions.
7,13,21,27-Tetraphenyl-29,31-bis[(N-(1-naphthalenylmethyl)aminocarbonyl)-
methoxy]-30,32-dihydroxy-2,4,16,18-tetraho-mo-3,17-dioxacalix[4]arene
(6).
Tetrahomodioxacalix[4]arene 5 (571 mg, 0.724 mmol), potassium carbonate
(100 mg, 0.726 mmol), potassium iodide (50 mg), and 2 (400 mg, 1.81 mmol)
in dried acetone (100 mL) was refluxed 80 h. After evaporation of solvent, the
residue was extracted with CH2Cl2. The organic layer was washed with water,
dried over MgSO4, and evaporated in vacuo. The residue was triturated with
MeOH to give the product mixture which was recrystallized from methanol to
afford 676 mg (80%) of the desired product as a pale yellow colored crystal. Mp
Acknowledgments
140–141 °C (decomposed); 1H NMR (400 MHz, CDCl3)
d 8.15 (d. 1, ArH,
The authors wish to acknowledge the financial support of the
SRC program (R11-2005-008-02001-0(2008) and the Sookmyung
Women’s University Research grant 2008 (1-0803-0137).
J = 6.6 Hz), 8.14 (d. 1, ArH, J = 6.6 Hz), 8.04 (d, 2, ArH, J = 8.8 Hz), 7.65–7.03 (m,
38, ArH, NH and OH), 6.90 (d, 4, ArH, J = 9.2 Hz), 5.29 (d, 1, NCH2Nap,
J = 14.4 Hz), 5.28 (d, 1, NCH2Nap, J = 14.4 Hz), 4.75 (d, 1, NCH2Nap, J = 14.4 Hz),
4.74 (d, 1, NCH2Nap, J = 14.4 Hz), 4.62 (s, 4, OCH2CO), 4.61 (d, 2, ArCH2O,
J = 14.8 Hz), 4.51 (d, 2, ArCH2O, J = 14.8 Hz), 4.39 (d, 2, ArCH2O, J = 10.4 Hz),
4.26 (d, 2, ArCH2O, J = 10.4 Hz), 3.87 (d, 2, ArCH2Ar, J = 14.0 Hz), 2.96 (d, 2,
ArCH2Ar, J = 14.0 Hz); 13C NMR (125 MHz, CDCl3) d 168.24 (C@O), 153.60,
153.41, 141.14, 140.25, 138.17, 134.36, 133.86, 133.03, 132.57, 131.51, 130.47,
130.07, 129.44, 129.07, 129.01, 128.83, 128.76, 128.21, 127.83, 127.37, 127.18,
127.13, 127.03, 126.93, 126.56, 125.84, 125.49, 125.25, 123.54, 122.56 (Ar),
73.32 (OCH2CO), 73.04, 71.02 (ArCH2O), 41.71 (NCH2Np), 28.88 (ArCH2Ar).
Anal. Calcd for C80H66O8N2: C, 81.20; H, 5.62. Found. C, 81.91; H, 5.66.
7,13,21,27-Tetraphenyl-29,31-bis[(N-(1-naphthalenylmethyl)amino-carbonyl)-
methoxy]-30,32-bis[N-(1-pyrenylmethyl)aminocarbonyl]-methoxy]-2,4,16,18-
tetrahomo-3,17-dioxacalix[4]arene (7). A mixture of 6 (421 mg, 0.316 mmol),
potassium carbonate (262 mg, 1.90 mmol), 4 (419 mg, 1.79 mmol) and a trace
catalytic amount of KI in dried CH3CN (120 mL) was refluxed for 120 h. The
solvent was evaporated and the residue was extracted with CH2Cl2. The
organic layer was washed two times with water, dried over anhydrous
magnesium sulfate, and evaporated in vacuo. The residue was triturated with
hexane to give the product mixture which was recrystallized from methylene
chloride and methanol to afford the pure product (393 mg, 72%) as a pale
yellow colored crystal. Mp 113–114 °C (decomposed); 1H NMR (400 MHz,
CDCl3) d 7.96–7.74 (m, 20, ArH and NH), 7.62–7.34 (m, 36, ArH), 7.19–6.62 (m,
8, ArH), 5.12 (d, 2, NCH2Ar, J = 12.0 Hz), 4.96 (d, 2, NCH2Ar, J = 12.0 Hz), 4.86 (d,
2, ArCH2O, J = 13.0 Hz), 4.83 (d, 4, OCH2CO, J = 10.8 Hz), 4.61 (d, 2, NCH2Ar,
J = 11.2. Hz), 4.07 (d, 2, ArCH2O, J = 13.0 Hz), 3.96 (d, 4, OCH2CO, J = 10.8 Hz),
3.75 (d, 2, ArCH2Ar, J = 12.4 Hz), 3.66 (d, 2, NCH2Ar, J = 11.2. Hz), 3.04 (d, 2,
ArCH2Ar, J = 12.4 Hz). 13C NMR (125 MHz, CDCl3) d 168.18 (C@O), 153.70,
139.44, 134.05, 133.08, 131.45, 131.16, 129.69, 129.0–129. 7, 129.00, 128.87,
127.99, 126.96, 126.90, 126.30, 126.21, 125.58, 125.37, 123.59, 123.40 (Ar),
71.26 (OCH2CO), 62.38 (ArCH2O), 41.28 (NCH2Np), 30.36 (ArCH2Ar). Anal. Calcd
for C118H92O10N4: C, 82.11; H, 5.37. Found. C, 81.29; H, 5.36.
References and notes
1. Senger, M. R.; Rico, E. P.; Arizi, M. D.; Frazzon, A. P. G.; Dias, R. D.; Bogo, M. R.;
Bonan, C. D. Toxicology 2006, 226, 229.
2. Hultberg, B.; Andersson, A.; Lsaksson, A. Toxicology 1997, 117, 89.
3. Barnham, K. J.; Masters, C. L.; Bush, A. I. Nat. Rev. Drug Discovery 2004, 3, 205.
4. (a) Zeng, L.; Miller, E. W.; Pralle, A.; Isacoff, E. Y.; Chang, C. J. J. Am. Chem. Soc.
2006, 128, 10; (b) Brunner, J.; Kraemer, R. J. Am. Chem. Soc. 2004, 126, 13626; (c)
Dujols, V.; Ford, F.; Czarnik, A. W. J. Am. Chem. Soc. 1997, 119, 7386.
5. (a) Kim, J. S.; Shon, O. J.; Rim, J. A.; Kim, S. K.; Yoon, J. J. Org. Chem. 2002, 67,
2348; (b) Kim, S. K.; Lee, S. H.; Lee, J. Y.; Lee, J. Y.; Bartsch, R. A.; Kim, J. S. J. Am.
Chem. Soc. 2004, 126, 16499; (c) Lee, M. H.; Quang, D. T.; Jung, H. S.; Yoon, J.;
Lee, C. H.; Kim, J. S. J. Org. Chem. 2007, 72, 4242.
6. (a) Gutsche, C. D.; Dhawan, B.; No, K. H.; Muthukrishnan, R. . J. Am. Chem. Soc.
1981, 103, 3782; (b) Masci, B.; Saccheo, S. Tetrahedron 1993, 49, 10739.
7. Bavoux, C.; Vocanson, F.; Perrin, M.; Lamartine, R. J. Incl. Phenom. Mol. Recogn.
Chem. 1995, 22, 119.
8. Dhawan, B.; Gutsche, C. D. J. Org. Chem. 1983, 48, 1536.
9. (a) Thuèry, P.; Nierlich, M.; Vicens, J.; Masci, B. Acta Crystallogr., Sect. C 2001, 57,
70; (b) Asfari, Z.; Harrowfield, J. M.; Ogden, M. I.; Vicens, J.; White, A. H. Angew.
Chem., Int. Ed. Engl. 1991, 30, 854.
10. Harrowfield, J. M.; Ogden, M. I.; White, A. H. J. Chem. Soc., Dalton Trans. 1991, 979.
11. Marcos, P. M.; Ascenso, J. R.; Lamartine, R.; Pereira, J. L. C. Tetrahedron 1997, 53,
11791.
12. Felix, S.; Ascenso, J. R.; Lamartine, R.; Pereira, J. L. C. Synth. Commun. 1998, 28,
1793.
13. No, K.; Lee, J. H.; Yang, S. H.; Kim, M. J.; Kim, J. S. J. Org. Chem. 2002, 67, 3165.
14. No, K.; Kim, J. S.; Shon, O. J.; Yang, S. H.; Suh, I. H.; Kim, J. G.; Bartsch, R. A.; Kim,
J. Y. J. Org. Chem. 2001, 66, 5976.
15. (a) Iasi, G. D.; Masci, B. Tetrahedron Lett. 1993, 34, 6635; (b) No, K.; Kim, J. S.;
Shon, O. J.; Yang, S. H.; Suh, I. H.; Kim, J. G.; Bartsch, R. A.; Kim, J. Y. J. Org. Chem.
2001, 66, 5976.
24. Thuery, P.; Nierlich, M.; Vicens, J.; Masci, B. Acta Crystallogr. 2001, C57, 70.
25. van der Veen, N. J.; Flink, S.; Deij, M. A.; Egberink, R. J. M.; van Veggel, F. C. J. M.;
Reinhoudt, D. N. J. Am. Chem. Soc. 2000, 122, 6112.
26. Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 2nd ed.; Plenum: New
York, 1999; Chapter 13..
16. Choi, J. K.; Lee, A.; Kim, S.; Ham, S.; No, K.; Kim, J. S. Org. Lett. 2006, 8, 1601.