J. Shi, D.-S. Guo, F. Ding, Y. Liu
FULL PAPER
tration experiments were carried out to afford self-consistent
thermodynamic parameters.
Table 2. Crystal data and experimental and refinement parameters
of complexes 3 and 4.
Complex 3: An ethanol solution of 4-HAB (19.8 mg, 0.1 mmol,
5 mL) was added dropwise to an aqueous solution of PM-β-CD
(142.8 mg, 0.1 mmol, 15 mL). The mixture was stirred at 50 °C for
12 h. After removing the insoluble substances by filtration, the re-
sultant solution was kept at 50 °C for several days, and orange com-
plex 3 was collected along with its mother liquor for X-ray crystal-
lographic analysis. Yield: 107.6 mg, 62%. UV/Vis (H2O): λ (ε,
Complex 3
Complex 4
Molecular formula
Mr / gmol–1
Crystal system
Space group
Z
a / Å
b / Å
c / Å
α / °
β / °
C75H134N2O42
1735.84
orthorhombic
P212121
4
14.8450(8)
22.1705(12)
27.5443(17)
90
90
90
9065.4(9)
1.272
3736
C75H134N3O36
1644.78
orthorhombic
P212121
4
10.6993(4)
27.3627(12)
29.1666(13)
90
90
90
8538.9(6)
1.279
3536
–1 cm–1) = 348 (2.07ϫ104) nm. 1H NMR (300 MHz, D2O): δ =
7.65 (d, 2 H, Ar-H), 7.54 (d, 2 H, Ar-H), 7.44–7.24 (m, 3 H, Ar-
H), 6.90 (d, 2 H, Ar-H), 5.05 (s, 7H 1-H), 3.72–3.08 (m, 105 H),
3.40 (21 H, 3-OMe), 3.31 (21 H, 2-OMe), 3.18 (18 H, 6-OMe) ppm.
C75H122O36N2·6H2O (1735.87): calcd. C 51.89, H 7.78, N1.61;
found C 51.42, H 7.64, N 1.52.
γ / °
V / Å3
ρcalcd. / gcm–3
F(000)
Complex 4: Prepared from 4-AAB and PM-β-CD according to a
procedure similar to that described above. Yield: 111.8 mg, 68%.
UV/Vis (H2O): λ (ε, –1 cm–1) = 379 (1.95ϫ104) nm. 1H NMR
(300 MHz, D2O): δ = 7.64–7.56 (d, 4 H, Ar-H), 7.53–7.37 (m, 3 H,
Ar-H), 6.79 (d, 2 H, Ar-H), 5.05 (s, 7H 1-H), 3.72–3.08 (m, 105
H), 3.40 (21 H, 3-OMe), 3.31 (21 H, 2-OMe), 3.18 (18 H, 6-OMe)
ppm. C75H123O35N3·H2O (1644.81): calcd. C 54.77, H 7.66, N 2.55;
found C 54.74, H 7.60, N 2.58.
T / K
293(2)
0.104
113(2)
0.102
µ (Mo-Kα) / mm–1
Crystal size / mm3
θ Range / °
0.16ϫ0.14ϫ0.14 0.26ϫ0.20ϫ0.18
1.48–25.01
1.58–25.00
64982
15017
0.0598
1.078
0.0822
0.2175
0.0931
0.2267
No. of reflections collected 68276
No. of unique reflections
Rint
GOF
Final R indices
[IϾ2σ(I)]
R1 = R indices
(all data)
15829
0.1139
1.181
0.0983
0.1984
0.1126
0.2059
Acknowledgments
This work was supported by the 973 Program (2006CB932900), the
National Natural Science Foundation of China (20572052,
20673061, and 20703025), and Special Fund for Doctoral Program
from the Ministry of Education of China (20050055004), which are
gratefully acknowledged.
in good agreement (error Ͻ 2%) with the literature data. Each
solution was degassed and thermostatted by a ThermoVac access-
ory before titration experiment. Twenty-five successive injections
were made for each titration experiment. A constant volume
(10 µL/injection) of host solution (20.04–20.32 m) in a 0.250 mL
syringe was injected into the reaction cell (1.4227 mL) charged with
guest molecules solution (0.85–1.00 m) in the same buffer solu-
tion. A representative titration curve is shown in Figure 7. Each
titration of PM-β-CD into the sample cell gave an apparent reac-
tion heat, caused by the formation of the inclusion complex be-
tween the host and guest. The reaction heat decreases after each
injection of host molecules because less and less guest molecules
are available to form inclusion complexes. A control experiment
was carried out in each run to determine the dilution heat by in-
jecting host solution into the same buffer solution containing no
guest molecules. The dilution heat determined in these control ex-
periments was subtracted from the apparent reaction heat mea-
sured in the titration experiments to give the net reaction heat.
[1] a) S. A. Neposodiev, J. F. Stoddart, Chem. Rev. 1998, 98, 1959–
1976; b) F. M. Raymo, J. F. Stoddart, Chem. Rev. 1999, 99,
1643–1644.
[2] a) A. Harada, Acc. Chem. Res. 2001, 34, 456–464; b) M. Ok-
ada, A. Harada, Org. Lett. 2004, 6, 361–364.
[3] a) P. N. Taylor, M. J. O’Connell, L. A. McNeill, M. J. Hall,
R. T. Aplin, H. L. Anderson, Angew. Chem. 2000, 112, 3598–
3602; Angew. Chem. Int. Ed. 2000, 39, 3456–3460; b) F. Caci-
alli, J. S. Wilson, J. Michels, C. Daniel, C. Silva, R. H. Friend,
N. Severin, P. Samori, J. P. Rabe, M. J. O’Connell, P. N. Taylor,
H. L. Anderson, Nat. Mater. 2002, 1, 160–164.
[4] a) H. Murakami, A. Kawabuchi, K. Kotoo, M. Kunitake, N.
Nakashima, J. Am. Chem. Soc. 1997, 119, 7605–7606; b) Y.
Kawaguchi, A. Harada, Org. Lett. 2000, 2, 1353–1356; c) Q.-
C. Wang, D.-H. Qu, J. Ren, K. Chen, H. Tian, Angew. Chem.
2004, 116, 2715–2719; Angew. Chem. Int. Ed. 2004, 43, 2661–
2665; d) D.-H. Qu, Q.-C. Wang, J. Ren, H. Tian, Org. Lett.
2004, 6, 2085–2088.
[5] a) A. Harada, J. Li, M. Kamachi, Nature 1993, 364, 516–518;
b) E. Ikeda, Y. Okumura, T. Shimomura, K. Ito, T. Hayakawa,
J. Chem. Phys. 2000, 112, 4321–4325; c) M. Saito, T. Shimo-
mura, Y. Okumura, K. Ito, R. Hayakawa, J. Chem. Phys. 2001,
114, 1–3.
The net reaction heat in each run was analyzed by using “one set
of binding sites” model (ORIGIN software) to simultaneously
compute the binding stoichiometry (N), complex stability constant
(KS), standard molar reaction enthalpy (∆H°), and standard devia-
tion from the titration curve. Generally, the first point of titration
curve was removed considering that the concentration of host in
the cell far exceeded the concentration of the guest. Knowledge of
the complex stability constant (KS) and molar reaction enthalpy
(∆H°) enabled calculation of the standard free energy (∆G°) and
entropy changes (∆S°), according to
[6] J. Szejtli, T. Osa in Comprehensive Supramolecular Chemistry
(Eds.: J. L. Atwood, J. E. Davies, D. D. MacNicol, F. Vögtle),
Pergamon/Elsevier, Oxford, 1996, vol. 3.
[7] a) K. Harata, Chem. Rev. 1998, 98, 1803–1827; b) M. Añibarro,
K. Gessler, I. Usön, G. M. Sheldrick, K. Harata, K. Uekama,
F. Hirayama, Y. Abe, W. Saenger, J. Am. Chem. Soc. 2001, 123,
9880–9888; c) J. L. Clark, B. R. Booth, J. J. Stezowski, J. Am.
Chem. Soc. 2001, 123, 9889–9895.
[8] a) Y. Liu, Z. Fan, H.-Y. Zhang, C.-H. Diao, Org. Lett. 2003,
5, 251–254; b) Y. Liu, Z. Fan, H.-Y. Zhang, Y. W. Yang, F.
∆G° = –RT lnKS = ∆H° – T∆S°
where R is the gas constant and T is the absolute temperature.
A typical curve fitting result for the complexation of PM-β-CD
with 4-AAB at pH 7.2 is shown in Figure 8b. To check the accuracy
of the observed thermodynamic parameters, two independent ti-
930
www.eurjoc.org
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2009, 923–931