682
B. Çoßsut et al. / Polyhedron 29 (2010) 675–682
[16] J. Xu, C.L. Toh, K.L. Ke, J.J. Li, C.M. Cho, X. Lu, E.W. Tan, C. He, Macromolecules 41
(2008) 9624.
photophysical and photochemical properties of the axially-disub-
stituted phenoxycyclotriphosphazenyl silicon phthalocyanine (5)
was also described and compared with unsubstituted ZnPc which
was used as standard. This new axially substituted silicon phthalo-
cyanine is soluble in most solvents such as chloroform, toluene,
DMSO, etc. In solution, the absorption spectra of the axially-disub-
stituted phenoxycyclotriphosphazenyl silicon phthalocyanine (5)
showed monomeric behaviour evidenced by a single (narrow) Q
band, typical of metallated phthalocyanine complexes in used sol-
vents such as DMSO, DMF, THF, chloroform, toluene and dichloro-
methane. The fluorescence quantum yield of complex 5 was typical
for MPcs. This complex (5) has average singlet oxygen quantum
yields (UD). The axially substitution of silicon phthalocyanine with
phenoxycyclotriphosphazenyl group seems to decrease the stabil-
ity of this complex when compared to unsubstituted ZnPc in
DMSO. The complex 5 showed lower Ksv and kq values when com-
pared to the unsubstituted ZnPc in DMSO.
[17] B. Çoßsut, F. Hacıveliog˘lu, M. Durmußs, A. Kılıç, S. Yesßilot, Polyhedron 28 (2009)
2510.
[18] F. Hacıveliog˘lu, M. Durmusß, S. Yesßilot, A. Kılıç, V. Ahsen, A.G. Gürek, Dyes Pigm.
79 (2008) 14.
[19] M. Durmusß, S. Yesßilot, B. Cosßut, A.G. Gürek, A. Kılıç, V. Ahsen, Synth. Met.,
submitted for publication.
[20] M.K. Lowery, A.J. Starshak, J.N. Esposito, P.C. Krueger, M.E. Kenney, Inorg.
Chem. 4 (1965) 128.
[21] S. Fery-Forgues, D. Lavabre, J. Chem. Educ. 76 (1999) 1260.
[22] D. Maree, T. Nyokong, K. Suhling, D. Phillips, J. Porphyrins Phthalocyanines 6
(2002) 373.
[23] A. Ogunsipe, J.-Y. Chen, T. Nyokong, New J. Chem. 28 (2004) 822.
[24] H. Du, R.A. Fuh, J. Li, A. Corkan, J.S. Lindsey, Photochem. Photobiol. 68 (1998)
141.
[25] J.H. Brannon, D. Madge, J. Am. Chem. Soc. 102 (1980) 62.
[26] A. Ogunsipe, T. Nyokong, J. Photochem. Photobiol. A: Chem. 173 (2005) 211.
[27] I. Seotsanyana-Mokhosi, N. Kuznetsova, T. Nyokong, J. Photochem. Photobiol.
A: Chem. 140 (2001) 215.
[28] N. Kuznetsova, N. Gretsova, E. Kalmkova, E. Makarova, S. Dashkevich, V.
Negrimovskii, O. Kaliya, E. Luk’yanets, Russ. J. Gen. Chem. 70 (2000) 133.
[29] W. Spiller, H. Kliesch, D. Wöhrle, S. Hackbarth, B. Roder, G. Schnurpfeil, J.
Porphyrins Phthalocyanines 2 (1998) 145.
[30] J. Rose, Advanced Physico-chemical Experiments, first ed., Sir Isaac Pitman and
Sons Ltd., London, 1964.
References
[31] D. Dell, B.W. Fitzsimmons, R.A. Shaw, J. Chem. Soc. (1965) 4070.
[32] M.J. Stillman, T. Nyokong, in: C.C. Leznoff, A.B.P. Lever (Eds.), Phthalocyanines:
Properties and Applications, vol. 1, VCH Publishers, New York, 1989 (Chapter
3).
[33] J. Simon, P. Bassoul, in: C.C. Leznoff, A.B.P. Lever (Eds.), Phthalocyanines:
Properties and Applications, vol. 2, VCH Publishers, New York, 1993 (Chapter
6).
[1] C.C. Leznoff, A.B.P. Lever, Phthalocyanines, Properties and Applications, vols. 1–
4, VCH, New York, 1989, 1993, 1996.
[2] G. Cheng, X. Peng, G. Hao, V.O. Kennedy, I.N. Ivano, K. Knappenberger, T.J. Hill,
M.A.J. Rodgers, M.E. Kenney, J. Phys. Chem. A 107 (2003) 3503.
[3] N.B. McKeown, J. Mater. Chem. 10 (2000) 1979.
[4] G. Kodis, C. Herrero, R. Palacios, E. Mariño-Ochoa, S. Gould, L. de la Garza, R. van
Grondelle, D. Gust, T.A. Moore, A.L. Moore, J.T.M. Kennis, J. Phys. Chem. B 108
(2004) 414.
[5] J.L. Rodríguez-Redondo, Á. Sastre-Santos, F. Fernández-Lázaro, D. Soares, G.C.
Azzellini, B. Elliott, L. Echegoyen, Chem. Commun. (2006) 1265.
[6] C. Farren, S. FitzGerald, M.R. Bryce, A. Beeby, A.S. Batsanov, J. Chem. Soc., Perkin
Trans. 2 (2002) 59.
[7] C. Farren, C.A. Christensen, S. FitzGerald, M.R. Bryce, A. Beeby, J. Org. Chem. 67
(2002) 9130.
[8] C.A. Barker, K.S. Findlay, S. Bettington, A.S. Batsanov, I.F. Perepichka, M.R. Bryce,
A. Beeby, Tetrahedron 62 (2006) 9433.
[9] J.E. Mark, H.R. Allcock, R. West, Inorganic Polymers, Prentice Hall, Englewood
Cliffs, NJ, 1992.
[34] D.D. Dominquez, A.W. Snow, J.S. Shirk, R.G.S. Pong, J. Porphyrins
Phthalocyanines 5 (2001) 582.
[35] H.S. Nalwa, J.S. Shirk, in: C.C. Leznoff, A.B.P. Lever (Eds.), Phthalocyanines:
Properties and Applications, vol. 4, VCH Publishers, New York, 1996 (Chapter
3).
_
[36] I. Gürol, M. Durmusß, V. Ahsen, T. Nyokong, Dalton Trans. (2007) 3782.
[37] P. Lo, S. Wang, A. Zeug, M. Meyer, B. Röder, D.K.P. Ng, Tetrahedron Lett. 44
(2003) 1967.
[38] Y. Zhu, J. Huang, X. Jiang, J. Sun, Inorg. Chem. Commun. 9 (2006) 473.
[39] X. Jiang, J. Huang, Y. Zhu, F. Tang, D.K.P. Ng, J. Sun, Bioorg. Med. Chem. Lett. 16
(2006) 2450.
[40] M. Idowu, T. Nyokong, J. Photochem. Photobiol. A: Chem. 204 (2009) 63.
[41] M.D. Maree, N. Kuznetsova, T. Nyokong, J. Photochem. Photobiol. A: Chem. 140
(2001) 117.
[42] J. Huang, S. Wang, P. Lo, W. Fong, W. Kod, D.K.P. Ng, New J. Chem. 28 (2004)
348.
[43] T. Nyokong, Coord. Chem. Rev. 251 (2007) 1707.
[44] J.S. Connolly, J.R. Bolton, in: M.A. Fox, M. Chanon (Eds.), Photoinduced Electron
Transfer, Part D, Elsevier, Amsterdam, 1988, p. 303.
[45] A. Ogunsipe, T. Nyokong, J. Porphyrins Phthalocyanines 9 (2005) 121.
[10] H.R. Allcock, Phosphorus–Nitrogen Compounds, Academic Press, New York,
1972 (Chapters 6 and 7).
[11] H.R. Allcock, M.E. Napierala, C.G. Cameron, S.J.M. O’Connor, Macromolecules
29 (1996) 1951.
[12] R.E. Singler, A.J. Deome, D.A. Dunn, M.J. Bieberich, Ind. Eng. Chem., Prod. Res.
Dev. 25 (1986) 46.
[13] M.A. Keller, C.S. Saba, Anal. Chem. 68 (1996) 3489.
[14] K. Inoue, T. Yamauchi, T. Itoh, E. Ihara, J. Inorg. Organomet. Polym. Mater. 17
(2007) 367.
[15] W.K. Huang, J.-T. Yeh, K.J. Chen, K.N. Chen, J. Appl. Polym. Sci. 79 (2001).