Brandel et al.
Figure 2. Chemical structures of imidazoles and benzimidazoles S1-S8.
dazole recognition results from a strong N-imidazolyl-Zn(II)
axial coordination6,7,8a,17 and bifurcated hydrogen bonds
between the substrate and the nitrogen atoms of the 1,10-
phenanthroline (noted phen) strap of the receptor. Moreover,
introduction of secondary interactions (π-π stacking, CH-π,
or hydrophobic interactions) may contribute to strengthen
the final assemblies. This self-assembly approach was
successfully implemented in photodyads18 and linear por-
phyrin arrays.19 Very recently, investigation of the self-
assembly behavior of self-complementary building blocks
showed that self-assembly guided via preferential weak
interactions developed with a surface may compete with the
classical entropy governed self-assembly in solution. As a
result, drastic changes in the morphology of self-assembled
species were observed, depending on a solution or a surface
assembly mode.20
In the prospect of utilizing self-assembled porphyrin wires
in prototypal devices, it is essential to fully control the
parameters of the assembly process. Such control requires a
careful assessment of all energetic parameters of the recogni-
tion process associated with the programmed assembly. We
present herein an extensive physicochemical study of the
recognition processes21 of various substrates (Figures 2 and
3) by phen-strapped zinc(II) porphyrins ZnL1-ZnL4 (Figure
1). In these receptors, meso-substitution by xylyl (ZnL2 and
ZnL3) or resorcinol-type (ZnL4)22 groups offers the op-
portunity to study the influence of steric hindrance around
the distal cavity. Imidazoles S1-S5, benzimidazoles S6-S8,
and imidazole free-base porphyrins H2L5 and H2L6 were used
to identify the key structural parameters controlling the
Figure 1. Chemical structures of the zinc porphyrin receptors.
elementary recognition or communication events between
building blocks.9-11 In noncovalent assemblies of functional
building blocks, the components are held together by multiple
weak interactions such as metal-ligand coordination bonds,
hydrogen bonds, electrostatic interactions, or hydrophobic
forces. The efficiency and success of self-assembly are
conditioned by the careful programming of the recognition
patterns between building blocks. Like other applications of
various strategies designed for efficient linear self-as-
sembly,12 multiporphyrins are mostly attained by multiple
H-bonding, metal coordination, or a combination of both.13,14
Inspired by the imidazole binding on zinc porphyrins as an
assembling tool, we have taken advantage of both the
selective recognition of imidazoles (Figure 1)15,16 and the
very efficient synthesis of phenanthroline superstructured
porphyrins to design self-assembling supramolecular building
blocks. We demonstrated that a careful ligand design based
on the induced-fit principle led to the selective and strong
recognition of imidazoles by the receptor (Figure 1). Imi-
(11) (a) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2001, 34,
40–48. (b) Holten, D.; Bocian, D. F.; Lindsey, J. S. Acc. Chem. Res.
2002, 35, 57–69. (c) Imahori, H. J. Phys. Chem. B 2004, 108, 6130–
6143.
(12) (a) Frampton, M. J.; Anderson, H. L. Angew. Chem., Int. Ed. 2007,
46, 1028–1064. (b) Fages, F.; Wytko, J. A.; Weiss, J. C. R. Chim.
2008, 11, 1241–1253.
(13) (a) Weiss, J. J. Inclusion Phenom. Macrocyclic Chem. 2001, 40, 1–
22. (b) Robertson, A.; Shinkai, S. Coord. Chem. ReV. 2000, 205, 157–
199. (c) Ogoshi, H.; Hatakeyama, H.; Kotani, J.; Kawashima, A.;
Kuroda, Y. J. Am. Chem. Soc. 1991, 113, 8181–8183. (d) Hayashi,
T.; Miyahara, T.; Hashizume, N.; Ogoshi, H. J. Am. Chem. Soc. 1993,
115, 2049–2051.
(14) For recent examples of self-assembled porphyrin devices, see: (a)
Nomoto, A.; Mitsuoka, H.; Oseki, H.; Kobuke, Y. Chem. Commun.
2002, 1074–1075. (b) Nomoto, A.; Kobuke, Y. Chem. Commun. 2002,
1104–1105. (c) Phillips-McNaughton, K.; Groves, J. T. Org. Lett. 2003,
5, 1829–1832. (d) Kuramochi, Y.; Satake, A.; Kobuke, Y. J. Am.
Chem. Soc. 2004, 126, 8668–8669. (e) Takahashi, R.; Kobuke, Y. J.
Org. Chem. 2005, 70, 2745–2753. (f) Furutsu, D.; Satake, A.; Kobuke,
Y. Inorg. Chem. 2005, 44, 4460–4462. (g) Hwang, I. W.; Park, M.;
Ahn, T. K.; Yoon, Z. S.; Ko, D. M.; Kim, D.; Ito, F.; Ishibashi, Y.;
Khan, S. R.; Nagasawa, Y.; Miyasaka, H.; Ikeda, C.; Takahashi, R.;
Ogawa, K.; Satake, A.; Kobuke, Y. Chem.-Eur. J. 2005, 11, 3753–
3761. (h) Shoji, O.; Tanaka, H.; Kawai, T.; Kobuke, Y. J. Am. Chem.
Soc. 2005, 127, 8598–8599. (i) Hajjaj, F.; Yoon, Z. S.; Yoon, M. C.;
Park, J.; Satake, A.; Kim, D.; Kobuke, Y. J. Am. Chem. Soc. 2006,
128, 4612–4623. (j) Wytko, J. A.; Weiss, J. In N4-Macrocyclic metal
complexes; Zagal, J., Bedioui, F., Dodelet, J. P., Eds.; Springer: New
York, 2006; Vol. 18, pp 63-250. (k) Satakea, A.; Shojia, O.; Kobuke,
Y. J. Organomet. Chem. 2007, 692, 635–644.
(17) (a) Iengo, E.; Zangrando, E.; Alessio, E. Eur. J. Inorg. Chem. 2003,
2371–2384. (b) Wojaczynski, J.; Latos-Graz˙yn´ski, L. Coord. Chem.
ReV. 2000, 204, 113–171. (c) Heitz, V.; Chambron, J. C.; Sauvage,
J. P. The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard,
R., Eds.; Academic Press: New York, 2000; Vol. 6, pp 1-42. (d)
Haycock, R. A.; Hunter, C. A.; James, D. A.; Michelsen, U.; Sutton,
L. R. Org. Lett. 2000, 2, 2435–2438.
(18) Leray, I.; Valeur, B.; Paul, D.; Regnier, E.; Koepf, M.; Wytko, J. A.;
Boudon, C.; Weiss, J. Photochem. Photobiol. Sci. 2005, 4, 280–286.
(19) Koepf, M.; Trabolsi, A.; Elhabiri, M.; Wytko, J. A.; Albrecht-Gary,
A. M.; Weiss, J. Org. Lett. 2005, 7, 1279–1282.
(20) Koepf, M.; Wytko, J. A.; Bucher, J.-P.; Weiss, J. J. Am. Chem. Soc.
2008, 130, 9994–10001.
(21) (a) Fatin-Rouge, N.; Blanc, S.; Pfeil, A.; Rigault, A.; Albrecht-Gary,
A. M.; Lehn, J. M. HelV. Chim. Acta 2001, 84, 1694–1711. (b)
Hamacek, J.; Blanc, S.; Elhabiri, M.; Leize, E.; Van Dorsselaer, A.;
Piguet, C.; Albrecht-Gary, A. M. J. Am. Chem. Soc. 2003, 125, 1541–
1550. (c) Kalny, D.; Elhabiri, M.; Moav, T.; Vaskevich, A.; Rubinstein,
I.; Shanzer, A.; Albrecht-Gary, A. M. Chem. Commun. 2002, 1426–
1427. (d) Elhabiri, M.; Hamacek, J.; Bu¨nzli, J. C. G.; Albrecht-Gary,
A. M. Eur. J. Inorg. Chem. 2004, 51–62.
(15) Froidevaux, J.; Ochsenbein, P.; Bonin, M.; Schenk, K.; Maltese, P.;
Gisselbrecht, J. P.; Weiss, J. J. Am. Chem. Soc. 1997, 119, 12362–
12363.
(16) (a) Dharam, P.; Wytko, J. A.; Koepf, M.; Weiss, J. Inorg. Chem. 2002,
41, 3699–3704. (b) Dharam, P.; Melin, F.; Hirtz, C.; Wytko, J. A.;
Ochsenbein, P.; Bonin, M.; Schenk, K.; Maltese, P.; Weiss, J. Inorg.
Chem. 2003, 42, 3779–3787.
(22) Brandel, J.; Trabolsi, A.; Melin, F.; Elhabiri, M.; Weiss, J.; Albrecht-
Gary, A. M. Inorg. Chem. 2007, 46, 9534–9536.
3744 Inorganic Chemistry, Vol. 48, No. 8, 2009