Organic Letters
Letter
(2) (a) Inglesby, P. A.; Evans, P. A. Chem. Soc. Rev. 2010, 39, 2791.
(b) Gilbertson, S. R.; DeBoef, B. J. Am. Chem. Soc. 2002, 124, 8784.
(c) Evans, P. A.; Baum, E. W. J. Am. Chem. Soc. 2004, 126, 11150.
(d) Evans, P. A.; Baum, E. W.; Fazal, A. N.; Pink, M. Chem. Commun.
2005, 63. (e) Wender, P. A.; Christy, J. P. J. Am. Chem. Soc. 2006, 128,
5354. (f) Hilt, G.; Janikowski, J. Angew. Chem., Int. Ed. 2008, 47, 5243.
(g) Yamasaki, R.; Terashima, N.; Sotome, I.; Komagawa, S.; Saito, S. J.
Org. Chem. 2010, 75, 480. (h) Saya, L.; Bhargava, G.; Navarro, M. A.;
Gulías, M.; Lop
Angew. Chem., Int. Ed. 2010, 49, 9886. (i) Canlas, G. M. R.; Gilbertson, S.
R. Chem. Commun. 2014, 50, 5007. (j) Araya, M.; Gulías, M.; Fernandez,
I.; Bhargava, G.; Castedo, L.; Mascarenas, J. L.; Lop
ez, F. Chem.Eur. J.
́
ez, F.; Fernandez, I.; Castedo, L.; Mascarenas, J. L.
́
̃
́
́
̃
2014, 20, 10255.
(3) (a) Lop
́
ez, F.; Mascarenas, J. L. Chem.Eur. J. 2007, 13, 2172.
̃
(b) Mehta, G.; Singh, V. Chem. Rev. 1999, 99, 881. (c) Butenschon, H.
Angew. Chem., Int. Ed. 2008, 47, 5287. (d) Yu, Z.-X.; Wang, Y.; Wang, Y.
̈
Chem.Asian J. 2010, 5, 1072.
Figure 3. Mechanistic rationale for inequivalent enantioselectivities in
[4 + 2 + 2] and [4 + 2] pathways.
(4) Using an alkyne-alkyne-diene [4 + 2 + 2], Gilbertson has reported a
moderately enantioselective reaction (70.5:29.5 er) yielding an eight-
membered carbocycle: DeBoef, B.; Counts, W. R.; Gilbertson, S. R. J.
Org. Chem. 2007, 72, 799. Rovis has reported a highly enantioselective
approach to azocine heterocycles via a [4 + 2 + 2] of dienyl isocyanates
and alkynes: Yu, R. T.; Friedman, R. K.; Rovis, T. J. Am. Chem. Soc. 2009,
131, 13250.
propose that two pathways with inequivalent enantioselectivities
lead to the cycloadducts formed. The first route involves an
enantioselective oxidative coupling of allene-bound coordination
complex A to form metallacycle B. This pathway subsequently
produces the [4 + 2 + 2] and [4 + 2] products with high
enantioselectivity. Alternatively, a pathway solely involving the
allenediene can simultaneously deliver the [4 + 2] product with
poor enantioselectivity. Consistent with this hypothesis is the
observed increase in enantioselectivity of the [4 + 2] process with
added allene and the near racemic product formed in its absence
(Figure 2).
In conclusion, a Rh-catalyzed [4 + 2 + 2] cycloaddition of
allenedienes and allenes for the construction of fused cyclo-
octanoids is reported. This catalytic cycloaddition is successful
with a diverse set of diene and allene components and provides
unique 5−8 cis-fused carbocycles in a highly stereoselective
fashion. The use of phosphoramidite ligands has enabled the
development of asymmetric variants of this process, which
represent the first examples of highly enantioselective multi-
component cycloadditions in medium ring carbocycle synthesis.
(5) (a) Noucti, N. N.; Alexanian, E. J. Angew. Chem., Int. Ed. 2013, 52,
8424. (b) Brusoe, A. T.; Edwankar, R. V.; Alexanian, E. J. Org. Lett. 2012,
14, 6096. (c) Brusoe, A. T.; Alexanian, E. J. Angew. Chem., Int. Ed. 2011,
50, 6596.
(6) Wender, P. A.; Jenkins, T. E.; Suzuki, S. J. Am. Chem. Soc. 1995, 117,
1843.
̀
(7) (a) Fleming, I.; Dunogues, J.; Smithers, R. The Electrophilic
Substitution of Allylsilanes and Vinylsilanes. In Organic Reactions; John
Wiley & Sons, Inc.: New York, 2004; pp 57−575. (b) Oshima, K.
Vinylsilanes. In Science of Synthesis; Fleming, I., Ed.; Thieme: Stuttgart,
Germany, 2002; Vol. 4, pp 713−754. (c) Kobayashi, S.; Manabe, K.;
Ishitani, H.; Matsuo, J.-I. Silyl Enol Ethers. In Science of Synthesis;
Fleming, I., Ed.; Thieme: Stuttgart, Germany, 2002; Vol. 4, pp 317−369.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures and spectral data for all new
compounds. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support was provided by the NSF (CAREER award
CHE-1054540). Acknowledgement is also made to the donors of
the ACS PRF (50245-DNI) for partial support.
REFERENCES
■
(1) (a) Tanaka, K., Ed. Transition-Metal-Mediated Aromatic Ring
Construction; John Wiley & Sons: Hoboken, NJ, 2013. (b) Broere, D. L.
́
J.; Ruitjer, E. Synthesis 2012, 44, 2639. (c) Domínguez, G.; Perez-
Castells, J. Chem. Soc. Rev. 2011, 40, 3430. (d) Nakamura, I.; Yamamoto,
Y. Chem. Rev. 2004, 104, 2127.
D
Org. Lett. XXXX, XXX, XXX−XXX