3,4-THF). dF (282 MHz, CDCl3) -117.7 (4F, br, F2 and o-F C6F5),
-137.8 (2F, br, F3 or F2¢), -140.0 (2F, br, F3 or F2¢), -152.5 (1F, t,
3JF,F 20, p-F C6F5), -157.0 (1F, br, F4¢), -161.7 (2F, m, m-F C6F5),
-162.1 (br, 2F, F¢3). Elemental analysis found: C, 44.99; H, 2.37.
Calculated for C26H16F14O2Zn: C, 45.14; H, 2.33.
of patent examples of the application of salts of the tetrakis(4-
nonafluorobiphenyl)borate anion in alkene polymerisation, see for
example: ExxonMobil, L. S. Baugh, A. O. Patil, C. P. Mehnert,
K. R. Squire, K. A. Cook, C. Gong, E. Berluche, K. S. Colle, A. J.
Oshinski, S. Zushma and B. J. Poole, Int. Pat. Appl., WO2008008112,
2008.
13 A. Guerrero, E. Martin, D. L. Hughes, N. Kaltsoyannis and M.
Bochmann, Organometallics, 2006, 25, 3311–3313.
14 V. I. Krasnov, A. S. Vinogradov and V. E. Platonov, Mendeleev
Commun., 2006, 16, 168–170.
15 P. Sartori and M. Weidenbruch, Chem. Ber., 1967, 100, 3016.
16 W. T. Miller and K. K. Sun, J. Am. Chem. Soc., 1970, 92, 6985–6987.
17 D. A. Walker, T. J. Woodman, D. L. Hughes and M. Bochmann,
Organometallics, 2001, 20, 3772–3776.
Crystal structure analyses†
A suitable crystal was selected and data for 5 were measured
at 120 K at the National Crystallography Service on a Bruker
Nonius APEX II CCD Area Detector equipped with a Bruker
˚
Nonius FR591 rotating anode (lMo-Ka = 0.71073 A) driven by
18 S. J. Lancaster, http://www.syntheticpages.org/pages/215; J. L. W.
Pohlmann and F. E. Brinckman, Z. Naturforsch., 1965, 20b, 5–11.
19 For 4-bromo-2,3,5,6,2¢,3¢,4¢,5¢,6¢-nonafluoro-biphenyl: dF (282 MHz,
293 K, C6D6) -131.7 (m, 2F), -137.3 (m, 2F), -138.3 (m, 2F), -149.4
(t, 1F, 3JF,F = 22 Hz), -160.3 (m, 2F).
COLLECT37 and processed by DENZO38 software. For 4, 4a,
6, 7, 9 and 10, data were collected at 140 K at UEA on an
Oxford Diffraction Xcalibur-3 CCD diffractometer equipped with
Mo-Ka radiation and graphite monochromator, the data were
processed using the CrysAlis-CCD and -RED39 programs. The
structures were determined in SHELXS-97 and refined using
SHELXL-97.40 Crystal data and refinement results for all samples
are collated in Table 2.
20 We note that the 19F NMR spectra show little sensitivity to solvent, as is
illustrated by comparison of the benzene-d6 and chloroform-d1 spectra
of compound 4, both of which are given in the experimental section.
21 The respective 19F NMR chemical shifts for the F2 position are:
-118 ppm in C6D6 for Zn (9–11), -120 ppm for Hg (8), -121 ppm
for Sn (4, 4a), -127 ppm for Si (2 and 3) and -133 ppm for B (6·NCMe
and 7·NCMe).
The large difference peak in compound 4 was thought to be of
a minor, disordered tin atom (the rest of this molecule was not
identified); refinement including this partially occupied atom gave
better R-indices and coordinate Esd’s but the results presented
here are for the complete major component only.
22 W. Tyrra and M. S. Wickleder, Z. Anorg. Allg. Chem., 2002, 628, 1841–
1847.
23 M. V. Metz, D. J. Schwartz, C. L. Stern, T. J. Marks and P. N. Nickias,
Organometallics, 2002, 21, 4159–4168.
24 D. J. Morrison, S. D. Riegel, W. E. Piers, M. Parvez and R. McDonald,
Chem. Commun., 2006, 2875–2877.
25 A. Karipides, C. Forman, R. H. P. Thomas and A. T. Reed, Inorg.
Chem., 1974, 13, 811–815.
References
26 It is not known whether the hydrolysis responsible for the generation
of compound 5 occurred before or after dissolution in benzene-d6 and
therefore no supporting spectroscopic data are provided.
27 K. Ishihara and H. Yamamoto, Eur. J. Org. Chem., 1999, 527–538.
28 (a) T. Beringhelli, G. D’Alfonso, D. Donghi, D. Maggioni, P. Mer-
candelli and A. Sironi, Organometallics, 2003, 22, 1588–1590; (b) T.
Beringhelli, G. D’Alfonso, D. Donghi, D. Maggioni, P. Mercandelli
and A. Sironi, Organometallics, 2004, 23, 5493–5502; (c) T. Beringhelli,
G. D’Alfonso, D. Donghi, D. Maggioni, P. Mercandelli and A. Sironi,
Organometallics, 2007, 25, 2088–2095; (d) D. Donghi, D. Maggioni, T.
Beringhelli, G. D’Alfonso, P. Mercandelli and A. Sironi, Eur. J. Inorg.
Chem., 2008, 1645–1653.
29 Targor GMBH, J. Schottek and C. Fritze, German Pat. Appl.,
DE10009714, 2001; Basell Polyolefine GMBH, R. Kratzer, German
Pat. Appl., DE10059717, 2001.
30 R. Duchateau, S. J. Lancaster, M. Thornton-Pett and M. Bochmann,
Organometallics, 1997, 16, 4995–5005.
31 A. N. Chernega, A. J. Graham, M. L. H. Green, J. Haggitt, J. Lloyd,
C. P. Mehnert, N. Metzler and J. Souter, J. Chem. Soc., Dalton Trans.,
1997, 2293–2303.
32 C. Bergquist, B. M. Bridgewater, C. J. Harlan, J. R. Norton, R. A.
Friesner and G. Parkin, J. Am. Chem. Soc., 2000, 122, 10581–10590.
33 Y. Sarazin, J. A. Wright, D. A. J. Harding, E. Martin, T. J. Woodman,
D. L. Hughes and M. Bochmann, J. Organomet. Chem., 2008, 693,
1494–1501.
34 M. Weidenbruch, M. Herrndorf, A. Scha¨fer, S. Pohl and W. Saak,
J. Organomet. Chem., 1989, 361, 139–145.
35 The torsion angles describing the extent of the twist vary between 109.4
and 126.3◦ and are included as supplementary information†.
36 Y. Sakamoto, T. Suzuki, A. Miura, H. Fujikawa, S. Tokito and Y. Taga,
J. Am. Chem. Soc., 2000, 122, 1832–1833.
1 M. A. Garcia-Monforte, P. J. Alonso, J. Fornies and B. Menjon, Dalton
Trans., 2007, 3347–3359.
2 G. B. Deacon, C. M. Forsyth and S. Nickel, J. Organomet. Chem., 2002,
647, 50–60.
3 J. G. Noltes and J. W. G. van den Hurk, J. Organomet. Chem., 1963, 1,
377–383.
4 A. G. Massey, F. G. A. Stone and A. J. Park, Proc. Chem. Soc., 1963,
212.
5 (a) Y. Sun, W. E. Piers and M. Parvez, Can. J. Chem., 1998, 76, 513–517;
(b) W. E. Piers, G. J. Irvine and V. C. Williams, Eur. J. Inorg. Chem., 2000,
2131–2142; (c) S. Aboulkacem, W. Tyrra and I. Pantenburg, Z. Anorg.
Allg. Chem., 2003, 629, 1569–1574; (d) W. E. Piers, Adv. Organomet.
Chem., 2005, 52, 1–76.
6 S. Garratt, A. Guerrero, D. L. Hughes and M. Bochmann, Angew.
Chem., Int. Ed., 2004, 43, 2166–2169.
7 A. J. Mountford, S. J. Lancaster, S. J. Coles, P. N. Horton, D. L. Hughes,
M. B. Hursthouse and M. E. Light, Organometallics, 2006, 25, 3837–
3847.
8 E. Martin, D. L. Hughes and S. J. Lancaster, Eur. J. Inorg. Chem., 2006,
4037–4041.
9 E. Martin, C. Spendley, A. J. Mountford, S. J. Coles, P. N. Horton,
D. L. Hughes, M. B. Hursthouse and S. J. Lancaster, Organometallics,
2008, 27, 1436–1446.
10 (a) W. E. Piers and T. Chivers, Chem. Soc. Rev., 1997, 26, 345–354;
(b) E. Y.-X. Chen and T. J. Marks, Chem. Rev., 2000, 100, 1391–1434;
(c) M. Bochmann, S. J. Lancaster, M. D. Hannant, A. Rodriguez, M.
Schormann, D. A. Walker and T. J. Woodman, Pure Appl. Chem.,
2003, 75, 1183–1195; (d) M. Bochmann, J. Organomet. Chem., 2004,
689, 3982–3998; (e) G. Erker, Dalton Trans., 2005, 1883–1890; (f) W. E.
Piers, Adv. Organomet. Chem., 2005, 52, 1–76.
37 R. Hooft, COLLECT: Data collection software, Nonius, B.V., 1998.
38 Z. Otwinowski and W. Minor, Methods Enzymol., 1997, 276, 307–326.
39 Programs CrysAlis-CCD and -RED, Oxford Diffraction Ltd., Abing-
don, UK, 2005.
11 E. Y.-X. Chen, M. V. Metz, L. Li, C. L. Stern and T. J. Marks, J. Am.
Chem. Soc., 1998, 120, 6287–6305.
12 (a) Northwestern University, T. J. Marks, L. Lubin and Y. S. Cheol,
Int. Pat. Appl., WO0102445, 2001; (b) Univation Tech LLC, M. W.
Holtcamp, Int. Pat. Appl., WO9964476, 1999; There are a number
40 G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, A64, 112–122.
This journal is
The Royal Society of Chemistry 2009
Dalton Trans., 2009, 1593–1601 | 1601
©