Peptide Cyclodimerization
FIGURE 1. On-resin peptide cyclodimerization of two sequences originally reported by Finn et al.26 Amino acids are represented by their single-
letter codes in bold print (X ) propargylglycine).
Peptide cyclization is most often accomplished by the
formation of amide, ester, thioester, disulfide, olefin, or C-C
bonds.12-14 Recently the copper(I)-mediated azide-alkyne
cycloaddition (CuAAC) reaction has been employed as a means
of orthogonal modification15 and cyclization of peptides,16-18
glycopeptides,19 polymers,20 and dendrimers.21,22 In the context
of peptides, this “click reaction”23-25 methodology offers two
important advantages. (1) Azide and alkyne units can be
incorporated into peptide sequences during solid-phase peptide
synthesis (SPPS) without protection, as both of these groups
are stable to typical conditions of peptide synthesis and cleavage.
(2) Azides and alkynes react selectively with each other, but
do so very slowly unless catalyzed, allowing their ligation to
be triggered at will.
serotype that binds several Rv integrins and contains the
canonical Arg-Gly-Asp (RGD) triad. The alkyne, introduced
as a propargylglycine unit, was located near the resin-bound
C-terminus, while the azide group was incorporated as a
5-azidopentanoyl unit at the N-terminus. On-resin cyclization
mediated by cuprous iodide gave high yields of head-to-tail
cyclic dimer rather than the expected cyclic monomer, even for
sequences of substantial length and no obvious conformational,
steric, or torsional constraints.
Several examples of solution-phase Cu-mediated cyclodimer-
ization of peptides and carbohydrates have been reported, all
with azido-alkyne substrates for which monomeric ring closure
is disfavored because of torsional or geometric factors (described
in more detail in the Supporting Information).27-30 Other
investigators have described mixtures of peptide cyclic mono-
mers and dimers as a function of ring strain and concentration,31,32
as well as clean macrocyclization under the influence of
conformational constraints.17,18,33 These observations show that
the CuAAC process is not inherently predisposed toward ring
closure by head-to-tail dimerization. The unexpected and clean
cyclodimerization of the two resin-bound peptides shown in
Figure 1 therefore signaled to us the presence of an unexpected
mechanistic feature. We suggested a sequence-dependent con-
formational bias and/or amide-Cu binding as two possible
contributing factors in our original report.26 We describe here
experimental tests that disprove these hypotheses and suggest
a crucial role for interchain hydrogen bonding. In addition, we
wanted to explore the scope and limitations of the cyclodimer-
ization method, since its products are both unique and potentially
useful. When compared with monocyclic analogues, cyclic
dimers test the contributions of both conformational rigidity and
valency in the binding of peptide motifs to their targets.
We previously described attempts to cyclize two peptides on
resin via the CuAAC reaction (Figure 1).26 The sequences used
in this preliminary study were derived from an adenovirus
(8) Yokoyama, F.; Suzuki, N.; Haruki, M.; Nishi, N.; Oishi, S.; Fujii, N.;
Utaru, A.; Kleinman, H. K.; Nomizu, M. Biochemistry 2004, 43, 13590–13597.
(9) Dathe, M.; Nikolenko, H.; Klose, J.; Bienert, M. Biochemistry 2004, 43,
9140–9150.
(10) Kumar, A.; Ye, G.; Wang, Y.; Lin, x.; Sun, G.; Parang, K. J. Med.
Chem. 2006, 49, 3395–3401.
(11) Monroc, S.; Badosa, E.; Feliu, L.; Planas, M.; Montesinos, E.; Bardaj´ı,
E. Peptides 2006, 27, 2567–2574.
(12) Lambert, J. N.; Mitchell, J. P.; Roberts, K. D. J. Chem. Soc., Perkin
Trans. 1 2001, 471–484.
(13) Bordusa, F. ChemBioChem 2001, 2, 405–409.
(14) Li, P.; Roller, P. P.; Xu, J. Curr. Org. Chem. 2002, 6, 411–440.
(15) Franke, R.; Doll, C.; Eichler, J. Tetrahedron Lett. 2005, 46, 4479–4482.
(16) Roice, M.; Johannsen, I.; Meldal, M. QSAR Comb. Sci. 2004, 23, 662–
673.
(17) Bock, V. D.; Perciaccante, R.; Jansen, T. P.; Hiemstra, H.; Van
Maarseveen, J. H. Org. Lett. 2006, 8, 919–922.
(18) Ray, A.; Manoj, K.; Bhadbhade, M. M.; Mukhopadhyay, R.; Bhatta-
charjya, A. Tetrahedron Lett. 2006, 47, 2775–2778.
(19) Agren, J. K. M.; Billing, J. F.; Grundberg, H. E.; Nilsson, U. J. Synthesis
2006, 18, 3141–3145.
(20) Grayson, S. M.; Laurent, B. A.; Eugene, D. E. Polym. Mater. Sci. Eng.
2006, 51, 827–828.
(21) Rijkers, D. T. S.; Van Esse, G. W.; Merkx, R.; Brouwer, A. J.; Jacobs,
H. J. F.; Pieters, R. J.; Liskamp, R. M. J. Chem. Commun. 2005, 4581–4583.
(22) Wu, P.; Malkoch, M.; Hunt, J. N.; Vestberg, R.; Kaltgrad, E.; Finn,
M. G.; Fokin, V. V.; Sharpless, K. B.; Hawker, C. J. Chem. Commun. 2005, 46,
5775–5777.
(23) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001,
40, 2004–2021.
(24) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67,
3057–3062.
(25) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew.
Chem., Int. Ed. 2002, 41, 2596–2599.
(27) Van Maarseveen, J. H.; Horne, W. S.; Ghadiri, M. R. Org. Lett. 2005,
7, 4503–4506.
(28) Billing, J. F.; Nilsson, U. J. J. Org. Chem. 2005, 70, 4847–4850.
(29) Bodine, K. D.; Gin, D. Y.; Gin, M. S. J. Am. Chem. Soc. 2004, 126,
1638–1639.
(30) Bodine, K. D.; Gin, D. Y.; Gin, M. S. Org. Lett. 2005, 7, 4479–4482.
(31) Angell, Y.; Burgess, K. J. Org. Chem. 2005, 70, 9595–9598.
(32) Choi, W. J.; Shi, Z.-D.; Worthy, K. M.; Bindu, L.; Karki, R. G.; Nicklaus,
M. C.; Fisher, R. J.; Burke, T. R., Jr. Bioorg. Med. Chem. Lett. 2006, 16, 5265–
5269.
(26) Punna, S.; Kuzelka, J.; Wang, Q.; Finn, M. G. Angew. Chem., Int. Ed.
2005, 44, 2215–2220.
(33) Torres, O.; Yu¨ksel, D.; Bernardina, M.; Kumar, K.; Bong, D. Chem-
BioChem 2008, 9, 1701–1705.
J. Org. Chem. Vol. 74, No. 8, 2009 2965