Chem. Biodiversity 2019, 16, e1900370
Lomlim, ‘Synthesis of 2-(2-oxo-2H-chromen-4-yl) acet-
gand.org).
amides as potent acetylcholinesterase inhibitors and
molecular insights into binding interactions’, Arch. Pharm.
Chem. Life Sci. 2019, e1800310.
[8] U. Sharma, P. Kumar, N. Kumar, B. Singh, ‘Recent advances
in the chemistry of phthalimide analogs and their
therapeutic potential’, Mini-Rev. Med. Chem. 2010, 10, 678–
704.
[9] A. M. Alanazi, A. S. El-Azab, I. A. Al-Suwaidan, K. E. H.
ElTahir, Y. A. Asiri, N. I. Abdel-Aziz, A. M. Alaa, ‘Structure-
based design of phthalimide derivatives as potential cyclo-
oxygenase-2 (COX-2) inhibitors: anti-inflammatory and
analgesic activities’, Eur. J. Med. Chem. 2015, 92, 115–123.
[10] P. Ahuja, A. Husain, N. Siddiqui, ‘Essential amino acid
incorporated GABA-phthalimide derivatives: synthesis and
anticonvulsant evaluation’, Med. Chem. Res. 2014, 23,
4085–4098.
BACE1 Enzymatic Assay
β-Secretase inhibitory assay of the compound 7g was
performed exactly according to the manufacturer’s
instruction for BACE1 (β-Secretase) FRET Assay Kit
(Invitrogen.
manuals/L0724.pdf).
Acknowledgements
This research has been supported by a grant from the
Research Council of Tehran University of Medical
Sciences (Grant No. 97-01-108-3787).
[11] S. P. Assis, T. G. Araújo, V. L. Sena, M. T. J. Catanho, M. N.
Ramos, R. M. Srivastava, V. L. Lima, ‘Synthesis, hypolipidem-
ic, and anti-inflammatory activities of arylphthalimides’,
Med. Chem. Res. 2014, 23, 708–716.
[12] R. Antunes, H. Batista, R. M. Srivastava, G. Thomas, C. C.
Araújo, R. L. Longo, H. Magalhães, M. B. Leão, A. C. Pavão,
‘Synthesis, characterization and interaction mechanism of
new oxadiazolo-phthalimides as peripheral analgesics’, J.
Mol. Struct. 2003, 660, 1–13.
[13] C. Pessoa, P. M. P. Ferreira, L. V. C. Lotufo, M. O. de Moraes,
S. M. Cavalcanti, L. C. D. Coêlho, M. Z. Hernandes, A. C. L.
Leite, C. A. De Simone, V. M. Costa, V. M. Souza, ‘Discovery
of phthalimides as immunomodulatory and antitumor
drug prototypes’, ChemMedChem: Chem. Enabl. Drug
Discov. 2010, 5, 523–528.
[14] N. Guzior, M. Bajda, M. Skrok, K. Kurpiewska, K. Lewiński, B.
Brus, A. Pišlar, J. Kos, S. Gobec, B. Malawska, ‘Development
of multifunctional, heterodimeric isoindoline-1,3-dione de-
rivatives as cholinesterase and β-amyloid aggregation
inhibitors with neuroprotective properties’, Eur. J. Med.
Chem. 2015, 92, 738–749.
[15] Z. Sang, K. Wang, H. Wang, L. Yu, H. Wang, Q. Ma, M. Ye, X.
Han, W. Liu, ‘Design, synthesis and biological evaluation of
phthalimide-alkylamine derivatives as balanced multifunc-
tional cholinesterase and monoamine oxidase-B inhibitors
for the treatment of Alzheimer’s disease’, Bioorg. Med.
Chem. Lett. 2017, 27, 5053–5059.
[16] N. Jiang, Q. Huang, J. Liu, N. Liang, Q. Li, Q. Li, S. S. Xie,
‘Design, synthesis and biological evaluation of new
coumarin-dithiocarbamate hybrids as multifunctional
agents for the treatment of Alzheimer’s disease’, Eur. J.
Med. Chem. 2018, 146, 287–298.
[17] N. Jiang, J. Ding, J. Liu, X. Sun, Z. Zhang, Z. Mo, X. Li, H. Yin,
W. Tang, S. S. Xie, ‘Novel chromanone-dithiocarbamate
hybrids as multifunctional AChE inhibitors with β-amyloid
anti-aggregation properties for the treatment of Alz-
heimer’s disease’, Bioorg. Chem. 2019, 103027.
Author Contribution Statement
Mahmood Biglar, Bagher Larijani, and Roghieh Mirza-
zadeh contributed the reagents and materials, and
analyzed the data. Saghi Sepehri and Maryam Moham-
madi-Khanaposhtani performed the in silico studies.
Mehdi Asadi and Mostafa Ebrahimi performed the
synthesis of compounds. Hamid Nadri and Najmeh
Edraki performed the biological assay. Massoud Aman-
lou and Mohammad Mahdavi conceived and designed
the experiments.
References
[1] K. P. Kepp, ‘Alzheimer’s disease due to loss of function: A
new synthesis of the available data’, Prog. Neurobiol. 2016,
143, 36–60.
[2] C. Patterson, ‘The World Alzheimer Report 2018’, ‘The State
of the Art of Dementia Research: New Frontiers’, Alz-
heimer’s Disease International (ADI), London, 2018.
[3] A. Kumar, A. Singh, ‘A review on Alzheimer’s disease
pathophysiology and its management: an update’, Phar-
macol. Rep. 2015, 67, 195–203.
[4] M. Prior, R. Dargusch, J. L. Ehren, C. Chiruta, D. Schubert,
‘The neurotrophic compound J147 reverses cognitive
impairment in aged Alzheimer’s disease mice’, Alzheimer’s
Res. Ther. 2013, 5, 25.
[5] B. M. McGleenon, K. B. Dynan, A. P. Passmore, ‘Acetylcholi-
nesterase inhibitors in Alzheimer’s disease’, Br. J. Clin.
Pharmacol. 1999, 48, 471.
[18] G. L. Ellman, K. D. Courtney, V. Andres Jr., R. M. Feather-
stone, ‘A new and rapid colorimetric determination of
acetylcholinesterase activity’, Biochem. Pharmacol. 1961,
88–95.
[6] G. G. Osborn, A. V. Saunders, ‘Current treatments for
patients with Alzheimer Disease’, J. Am. Osteopath. Assoc.
2010, 110, S16–S26.
[19] J. A. Erickson, M. Jalaie, D. H. Robertson, R. A. Lewis, M.
Vieth, ‘Lessons in molecular recognition: the effects of
[7] J. Kara, P. Suwanhom, C. Wattanapiromsakul, T. Nualnoi, J.
Puripattanavong, P. Khongkow, V. S. Lee, A. Gaurav, L.
(12 of 13) e1900370
© 2019 Wiley-VHCA AG, Zurich, Switzerland