SCHEME 1. Unwinding-Rewinding Helicity Change in the
[36]Octaphyrin(2.1.0.1.2.1.0.1)
Dynamic Figure Eight Loop Structure of
meso-Tetraaryl[32]octaphyrins(1.0.1.0.1.0.1.0)
Megumi Mori, Toshifumi Okawa, Noriko Iizuna,
Kana Nakayama, Juha M. Lintuluoto,† and
Jun-ichiro Setsune*
Department of Chemistry, Graduate School of Science, Kobe
UniVersity, Nada-ku, Kobe 657-8501, Japan
ReceiVed January 18, 2009
Mo¨bius aromaticity,6 inspired by a detailed analysis of twisted
π-systems of octaphyrins in the design of Mo¨bius molecules
by Herges.7 The unique stereochemical feature of octaphyrins
has potential application to chirality sensing and asymmetric
catalysis. In fact, we have reported that these octaphyrins can
undergo unidirectional helicity induction by reversible com-
plexation with optically active carboxylic acids,3e or by ir-
reversible metalation in the presence of optically active ancillary
ligand.3f Understanding dynamics of the figure eight confor-
mational change is fundamental for further exploring the
stereochemical aspect of octaphyrins, and thus the inversion
barriers of the figure eight loop in the [34]-octaphy-
rin(1.1.1.0.1.1.1.0) and [36]octaphyrin(2.1.0.1.2.1.0.1) were
estimated by Vogel and co-workers to be at least 85 kJ mol-1.2b,c
As a matter of fact, enantiomeric separation of the latter was
successfully performed.2c These octaphyrins are made of two
pairs of different dipyrrolic components and the inversion of
the helical figure eight loop requires unwinding of the molecular
twist followed by rewinding in the opposite way as depicted in
Scheme 1.
3,3′-Diethyl substituents of the 2,2′-bipyrrole components
in meso-tetraaryl[32]octaphyrins(1.0.1.0.1.0.1.0) affect the
cavity shape through CH/π interactions and remarkably
accelerate syn-anti conformational change of the 2,2′-
bipyrrole components leading to helicity change in the figure
eight loop of [32]octaphyrins.
Octaphyrins are composed of eight pyrrole units and some
structural variations in the number of π-electrons (30, 32, 34,
36, and 38) and of bridging meso-like carbons (0, 2, 4, 6, and
8) are known.1-5 The π-conjugation systems of octaphyrins in
a helical figure eight conformation are of great interest.2,3 For
example, Osuka reported octaphyrin metal complexes with
In contrast, it was shown that 2,3,6,7,11,12,15,16,20,21,24,25,
29,30,33,34-hexadecaethyl[32]octaphyrin(1.0.1.0.1.0.1.0) 1a hav-
ing four parts of 3,3′,4,4′-tetraethyl-2,2′-bipyrrole was rapidly
interchanging between the figure eight enantiomeric forms and
† Present address: Department of Synthetic Chemistry and Biochemistry,
Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.
(1) (a) Sessler, J. L.; Seidel, D. Angew. Chem., Int. Ed. 2003, 42, 5134–
5175. (b) Latos-Gran´yn´ski, L. Angew. Chem., Int. Ed. 2004, 43, 5124–5128.
(2) (a) Vogel, E.; Bro¨ring, M.; Fink, J.; Rosen, D.; Schmickler, H.; Lex, J.;
Chan, K. W. K.; Wu, Y. D.; Plattner, D. A.; Nendel, M.; Houk, K. N. Angew.
Chem., Int. Ed. 1995, 34, 2511–2514. (b) Bro¨ring, M.; Jendrny, J.; Zander, L.;
Schmickler, H.; Lex, J.; Wu, Y. D.; Nendel, M.; Chen, J. G.; Plattner, D. A.;
Houk, K. N.; Vogel, E. Angew. Chem., Int. Ed. 1995, 34, 2515–2517. (c) Werner,
A.; Michels, M.; Zander, L.; Lex, J.; Vogel, E. Angew. Chem., Int. Ed. 1999,
38, 3650–3653. (d) Vogel, E.; Michels, M.; Zander, L.; Lex, J.; Tuzun, N. S.;
Houk, K. N. Angew. Chem., Int. Ed. 2003, 42, 2857–2862. (e) Bley-Escrich, J.;
Gisselbrecht, J.-P.; Michels, M.; Zander, L.; Vogel, E.; Gross, M. Eur. J. Inorg.
Chem. 2004, 49, 2–499.
(3) (a) Setsune, J.; Maeda, S. J. Am. Chem. Soc. 2000, 122, 12405–12406.
(b) Setsune, J.; Katakami, Y.; Iizuna, N. J. Am. Chem. Soc. 1999, 121, 8957–
8958. (c) Setsune, J.; Mori, M.; Okawa, T.; Maeda, S.; Lintuluoto, J. M. J.
Organomet. Chem. 2007, 692, 166–174. (d) Mori, M.; Setsune, J. Chem. Lett.
2007, 36, 244–245. (e) Lintuluoto, J. M.; Nakayama, K.; Setsune, J. Chem.
Commun. 2006, 69, 3492–3494. (f) Setsune, J.; Tsukajima, A.; Okazaki, N.;
Lintuluoto, J. M.; Lintuluoto, M. Angew. Chem., Int. Ed. 2009, 48, 771–775.
(4) (a) Seidel, D.; Lynch, V.; Sessler, J. L. Angew. Chem., Int. Ed. 2002, 41,
1422–1425. (b) Sessler, J. L.; Seidel, D.; Lynch, V. J. Am. Chem. Soc. 1999,
121, 11257–11258.
the theoretically estimated inversion barrier was as low as 25
2c
kJ mol-1
.
This helicity change of 1a occurs with keeping
diastereotopicity of the CH2 protons at the pyrrole ꢀ-position,
which is not consistent with the unwinding-rewinding mech-
anism. The helicity change is enabled by an alternating
stretching-compressing distortion of the rhombic cavity that
is enclosed by four panels of the planar dipyrrin unit connected
with four hinges in the form of bipyrrole C2-C2′ bonds
(Scheme 2). That is, stretching along a shorter diagonal axis of
the rhombic cavity accompanied by compressing along a longer
diagonal axis leads to a mirror image, whereby a bisdipyrrin
unit drawn with a heavy black line in Scheme 2 is interchanging
between anti and syn conformation. Vogel originally described
that the two enantiomers are interchanging via “tub” conforma-
tion like cyclooctatetraene,2b but its detailed dynamic feature
has remained to be clarified.
(5) (a) Shimizu, S.; Shin, J.-Y.; Furuta, H.; Ismael, R.; Osuka, A. Angew.
Chem., Int. Ed. 2003, 42, 78–82. (b) Shin, J.-Y.; Furuta, H.; Yoza, K.; Igarashi,
S.; Osuka, A. J. Am. Chem. Soc. 2001, 123, 7190–7191. (c) Geier, G. R., III;
Grindrod, S. C. J. Org. Chem. 2004, 69, 6404–6412.
(6) Tanaka, Y.; Saito, S.; Mori, S.; Aratani, N.; Shinokubo, H.; Shibata, N.;
Higuchi, Y.; Yoon, Z. S.; Kim, K. S.; Noh, S. B.; Park, J. K.; Kim, D.; Osuka,
A. Angew. Chem., Int. Ed. 2008, 47, 681–684.
(7) Herges, R. Chem. ReV. 2006, 106, 4820–4842.
10.1021/jo9001189 CCC: $40.75
Published on Web 03/27/2009
2009 American Chemical Society
J. Org. Chem. 2009, 74, 3579–3582 3579