ORGANIC
LETTERS
2009
Vol. 11, No. 8
1817-1820
Concise Synthesis of Tricyclic
Isoindolinones via One-Pot Cascade
Multicomponent Sequences
Raouf Medimagh,† Sylvain Marque,*,† Damien Prim,*,† Je´roˆme Marrot,† and
Saber Chatti‡
Institut LaVoisier de Versailles (ILV) UMR CNRS 8180, UniVersite´ de
Versailles-Saint-Quentin-en-YVelines, 45 AVenue des Etats-Unis,
78 035 Versailles, Cedex, France, and Laboratoire de Chimie Verte, Institut National
de Recherche et d’Analyse Physico-chimique (INRAP), Poˆle Technologique de Sidi
Thabet, 2020 Sidi Thabet, Tunisia
prim@chimie.uVsq.fr; sylVain.marque@chimie.uVsq.fr
Received February 25, 2009
ABSTRACT
A series of enantiopure tricyclic isoindolinones has been successfully synthesized through a one-pot selective cascade process from furan
derivatives. The synthesis is straightforward and gave good overall yields taking into account the concomitant formation of five C-C, C-O,
and C-N bonds. The strategy was extended to the preparation of a thiazolidine analogue.
Rapid synthesis of complex molecules in a single operation
without isolation of intermediates is one of the current
concerns of the scientific community1 that drives increasing
efforts. Recently, cascade multicomponent reactions (CMCR)
have emerged as powerful and bond-forming efficient tools
that allow the preparation of polycyclic targets by connecting
several components in a one-pot sequential and efficient
manner.2 Due to their high versatility,3 small heterocycles
were particularly attractive in CMCR. In this context, we
became interested in the preparation of potentially biological
active enantiopure tricyclic lactam-isoindolinone deriva-
tives4 (Scheme 1). Traditionally, the synthesis of such targets
(X ) O), recently rationalized by Allin et al.,5 was realized
using 2-formylbenzoic acid and amino alcohols through the
formation of bonds (d) and (e). We anticipated that the
carboxylic group, essential to the formation of the lactam
† Universite´ de Versailles-Saint-Quentin-en-Yvelines.
‡ Institut National de Recherche et d’Analyse Physico-chimique (INRAP).
(1) (a) Tietze, L. F. Chem. ReV. 1996, 96, 115. (b) Enders, D.; Grondal,
C.; Hu¨ttl, M. R. M. Angew. Chem., Int. Ed. 2007, 46, 1570. (c) Chapman,
C. J.; Frost, C. Synthesis 2007, 1.
(2) (a) Do¨mling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168. (b)
Tietze, L. F.; Evers, T. H.; To¨pken, E. Angew. Chem., Int. Ed. 2001, 40,
903. (c) Do¨mling, A. Chem. ReV. 2006, 106, 17. (d) Bienayme´, H.; Hulme,
C.; Oddon, G.; Schmitt, P. Chem.sEur. J. 2000, 6, 3321.
(4) For selected examples, see: (a) Comins, D. L.; Schilling, S.; Zhang,
Y. Org. Lett. 2005, 7, 95. (b) Allin, S. M.; Northfield, C. J.; Page, M. I.;
Slawin, A. M. Z. Tetrahedron Lett. 1998, 39, 4905. (c) Chen, M.-D.; He,
M.-Z.; Zhou, X.; Huang, L.-Q.; Ruan, Y.-P.; Huang, P.-Q. Tetrahedron
2005, 61, 1335.
(3) (a) Constantino, L.; Barlocco, D. Curr. Med. Chem. 2006, 13, 65.
(b) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. ReV. 2003, 103,
893. (c) Isambert, N.; Lavilla, R. Chem.sEur. J. 2008, 14, 8444.
(5) Allin, S. M.; Northfield, C. J.; Page, M. I.; Slawin, A. M. Z.
Tetrahedron Lett. 1997, 38, 3627.
10.1021/ol9003965 CCC: $40.75
Published on Web 03/25/2009
2009 American Chemical Society