J. B. Thomas et al. / Bioorg. Med. Chem. Lett. 19 (2009) 1438–1441
1441
6. Walker, N.; Lepee-Lorgeoux, I.; Fournier, J.; Betancur, C.; Rostene, W.; Ferrara,
P.; Caput, D. Brain Res. Mol. Brain Res. 1998, 57, 193.
7. Hokfelt, T.; Everitt, B. J.; Theodorsson-Norheim, E.; Goldstein, M. J. Comp.
Neurol. 1984, 222, 543.
8. Kalivas, P. W.; Miller, J. S. Brain Res. 1984, 300, 157.
9. Kalivas, P. W.; Nemeroff, C. B.; Prange, A. J., Jr. Eur. J. Pharmacol. 1982, 78, 471.
10. Ford, A. P.; Marsden, C. A. Brain Res. 1990, 534, 243.
11. Nemeroff, C. B.; Hernandez, D. E.; Luttinger, D.; Kalivas, P. W.; Prange, A. J., Jr.
Ann. N.Y. Acad. Sci. 1982, 400, 330.
12. Lee, K.; Kim, Y.; Kim, A. M.; Helmin, K.; Nairn, A. C.; Greengard, P. Proc. Natl.
Acad. Sci. U.S.A. 2006, 103, 3399.
13. Matsuyama, S.; Fukui, R.; Higashi, H.; Nishi, A. Eur. J. Neurosci. 2003, 18, 1247.
14. Matsuyama, S.; Higashi, H.; Maeda, H.; Greengard, P.; Nishi, A. J. Neurochem.
2002, 81, 325.
15. Binder, E. B.; Kinkead, B.; Owens, M. J.; Nemeroff, C. B. Biol. Psychiatry 2001, 50,
856.
16. Kitabgi, P. Curr. Opin. Drug Discov. Dev. 2002, 5, 764.
17. Tanaka, K.; Masu, M.; Nakanishi, S. Neuron 1990, 4, 847.
18. Vita, N.; Laurent, P.; Lefort, S.; Chalon, P.; Dumont, X.; Kaghad, M.; Gully, D.; Le
Fur, G.; Ferrara, P.; Caput, D. FEBS Lett. 1993, 317, 139.
19. Chalon, P.; Vita, N.; Kaghad, M.; Guillemot, M.; Bonnin, J.; Delpech, B.; Le Fur,
G.; Ferrara, P.; Caput, D. FEBS Lett. 1996, 386, 91.
20. Mazella, J.; Botto, J.; Guillemare, E.; Coppola, T.; Sarret, P.; Vincent, J. P.
J. Neurosci. 1996, 16, 5613.
Figure 1. NTR1 receptor partial agonists disclosed by Wyeth Laboratories.
21. Petersen, C. M.; Nielsen, M. S.; Nykjaer, A.; Jacobsen, L.; Tommerup, N.;
Rasmussen, H. H.; Roigaard, H.; Gliemann, J.; Madsen, P.; Moestrup, S. K. J. Biol.
Chem. 1997, 272, 3599.
22. Mazella, J.; Zsurger, N.; Navarro, V.; Chabry, J.; Kaghad, M.; Caput, D.; Ferrara,
P.; Vita, N.; Gully, D.; Maffrand, J. P.; Vincent, J. P. J. Biol. Chem. 1998, 273,
26273.
23. Gully, D.; Canton, M.; Boigegrain, R.; Jeanjean, F.; Molimard, J.; Poncelet, M.;
Gueudet, C.; Heaulme, M.; Leyris, R.; Brouard, A.; Pelaprat, D.; Labbe-Jullie, C.;
Mazella, J.; Soubrie, P.; Maffrand, J. P.; Rostene, W.; Kitabgi, P.; Le Fur, G. Proc.
Natl. Acad. Sci. U.S.A. 1993, 90, 65.
24. Gully, D.; Labeeuw, B.; Boigegrain, R.; Oury-Donat, F.; Bachy, A.; Poncelet, M.;
Steinberg, R.; Suaud-Chagny, M. F.; Santucci, V.; Vita, N.; Pecceu, F.; Labbe-
Jullie, C.; Kitabgi, P.; Soubrie, P.; Le Fur, G.; Maffrand, J. P. J. Pharmacol. Exp. Ther.
1997, 280, 802.
was sufficient to convert from antagonist to partial agonist activ-
ity. Beyond this we have shown that this agonist activity was
resilient to some (4a–c) but not all (5) changes to the scaffold.
We have also shown that the presence of L-leucine alone (5) is
insufficient to guarantee partial agonist activity.
During the course of this investigation, Fan and coworkers dis-
closed the structures for two NTR1 partial agonists (6 and 7,
Fig. 1).36 These compounds arose from a campaign to identify NT
small-molecule agonists using virtual screening techniques. The
investigators confirmed the NTR1 receptor partial agonist activity
of 6 and 7 in a calcium release (FLIPR) assay. We found this of inter-
est, and based on our observations, do not believe that it is a coin-
cidence that both of these compounds incorporate the amino acid
leucine. Though there is much more to learn regarding small-mol-
ecule NTR1 compounds, it will be of interest to discover why leu-
cine appears to be a privileged group for promoting agonist
activity in NTR1 ligands.
25. Hong, F.; Zaidi, J.; Cusack, B.; Richelson, E. Bioorg. Med. Chem. 2002, 10, 3849.
26. Richard, F.; Barroso, S.; Martinez, J.; Labbe-Jullie, C.; Kitabgi, P. Mol. Pharmacol.
2001, 60, 1392.
27. Barroso, S.; Richard, F.; Nicolas-Etheve, D.; Reversat, J. L.; Bernassau, J. M.;
Kitabgi, P.; Labbe-Jullie, C. J. Biol. Chem. 2000, 275, 328.
28. Labbe-Jullie, C.; Barroso, S.; Delphine, N.; Reversat, J.; Botto, J.; Mazella, J.;
Bernassau, J.; Kitabgi, P. J. Biol. Chem. 1998, 273, 16351.
29. Labbe-Jullie, C.; Barroso, S.; Nicolas-Eteve, D.; Reversat, J. L.; Botto, J. M.;
Mazella, J.; Bernassau, J. M.; Kitabgi, P. J. Biol. Chem. 1998, 273, 16351.
30. Pang, Y.; Cusack, B.; Groshan, K.; Richelson, E. J. Biol. Chem. 1996, 271, 15060.
31. Labeeuw, B.; Gully, D.; Jeanjean, F.; Molimard, J.-C.; Boigegrain, R. WO/1996/
032382, 1996.
In conclusion, we have demonstrated that replacement of the
amino acid group in NTR1 antagonists such as 1a or 1b with leu-
cine afforded small-molecule partial agonists (3a and 3b) with
32. All compounds showed satisfactory NMR and combustion data. The NMR
spectrum of 3a was recorded using
a 300 MHz (Bruker AVANCE 300)
spectrometer using tetramethylsilane as the internal standard. 1H NMR
(CDCl3) d 8.8 (d, 1H, J = 4.72 Hz), 8.14 (d, 1H, J = 1.81 Hz), 7.95 (d, 1H, J = 9.1),
7.5 (dd, 1H, J = 1.89 and 9.1 Hz), 7.4 (d, 1H, J = 7.95 Hz), 7.20 (t, 1H, J = 8.42 Hz),
7.10 (s, 1H), 7.08 (d, 1H, J = 4.72 Hz), 6.38 (d, 2H, J = 8.42 Hz), 4.81 (br s, 1H),
3.39 (s, 6H), 1.74 (m, 3H), 0.96 (dd, 6H, J = 5.49 and 10.21 Hz).
the L-leucine enantiomer providing significantly higher potency.
The propensity of this amino acid to confer agonist behavior was
also observed in analogs of 3a (4a–c). In addition to this, we have
also shown that the presence of leucine as part of a molecular
structure (5) is not enough to guarantee an NTR1 partial agonist.
Finally, the results from this study also provide support for the
receptor-binding models that proposed overlapping active sites
for NT agonists and antagonists. Additional studies to identify po-
tent NTR1 small-molecule agonists are currently in progress and
will be reported in due course.
33. Agonist activity was measured in these cells by monitoring increases in
internal calcium concentrations using the calcium-sensitive dye, calcium-4,
and a FlexStation II384 fluorometric imaging plate reader (MDS Analytical
Technologies, Sunnyvale, CA). Cells were plated in 96-well plates at 20,000
cells per well 24 h before assay. Prior to assay, the media was removed and the
cells were washed 1Â with 100
2 mM probenecid) followed by addition of 100
dye was reconstituted in dye loading buffer as per manufacturer’s instructions
and 100 l dye was added to wells. Dye loading was performed for 1 h at 37 °C
l
l dye loading buffer (HBSS plus 20 mM HEPES,
ll dye loading buffer. Calcium-4
l
in 5% CO2. Fluorescent intensities were measured for 17 s (baseline intensity)
before and for 40 s after compound addition. Compound-induced fluorescence
increases were measured as the difference between peak and baseline
Acknowledgments
intensity for each well. Test compounds were initially screened at 10 lM
This research was supported by the National Institute on Drug
Abuse, Grant DA024702-01. We gratefully acknowledge the NIMH
Chemical Synthesis and Drug Supply Program for providing us with
the standard NTR1 antagonist SR48692 (1a).
final concentration and an EC50 was determined for compounds exhibiting at
least 50% neurotensin Emax. EC50 values were determined from 10-point half-
log concentration–response curves.
34. The assays were run as above except that during the last 15 min of the
incubation the cells were pretreated (15 min, in duplicate) with 1a (1 or 4
lM)
or 1b (1 or 10 M) or 5 (1 or 10 M) followed by the addition of one of eight
l
l
References and notes
different concentrations of neurotensin. Test compounds and neurotensin were
dissolved in DMSO (1% final assay concentration). The Ke was determined using
the equation: Ke = [antagonist]/((EC50 Ant/EC50control) À 1). The EC50 values
were determined using Prism (v 5.0, Graph Pad, San Diego, CA).
35. Quéré, L.; Boigegrain, R.; Jeanjean, F.; Gully, D.; Evrard, G.; Durant, F. J. Chem.
Soc., Perkin Trans. 2 1996, 2639.
1. Roehr, B. BMJ 2005, 331, 476.
2. Caraway, R.; Leeman, S. E. J. Biol. Chem. 1973, 248, 6854.
3. Quirion, R.; Rowe, W. B.; Lapchak, P. A.; Araujo, D. M.; Beaudet, A. Ann. N.Y.
Acad. Sci. 1992, 668, 109.
4. Sarret, P.; Perron, A.; Stroh, T.; Beaudet, A. J. Comp. Neurol. 2003, 461, 520.
5. Uhl, G. R. Ann. N.Y. Acad. Sci. 1982, 400, 132.
36. Fan, Y.; Lai, M. H.; Sullivan, K.; Popiolek, M.; Andree, T. H.; Dollings, P.; Pausch,
M. H. Bioorg. Med. Chem. Lett. 2008, 18, 5789.