1686
J. G. M. Morton et al. / Tetrahedron Letters 50 (2009) 1684–1686
Supplementary data
OH O
MOMO
MOMO
O
MOMO
OH
a,b
c,d
O
OEt
Supplementary data (experimental details and spectral data)
associated with this article can be found, in the online version, at
CN
82%
87%
O
O
e
OH
35
34
36
37
CO2Et
38
O
O
References and notes
f,g
61%
Br
CO2Et
CN
O
1. (a) Ando, T.; Tsurumi, Y.; Ohata, N.; Uchida, I.; Yoshida, K.; Okahura, M. J.
Antibiot. 1988, 41, 25–30; (b) Ando, T.; Yoshida, K.; Okahura, M. J. Antibiot. 1998,
41, 31–35.
2. (a) Norris, D. B.; Depledge, P.; Jackson, A. P. Chem. Abstr. 1991, 115, 64776h; PCT
Int. Appl. WO 91 07 953.; (b) Onodera, H.; Ichimura, M.; Sakurada, K.;
Kawabata, A.; Octa, T. PCT Int. Appl. WO 2006077954.; (c) Onodera, H.;
Ichimura, M.; Sakurada, K.; Kawabata, A.; Ota, T. PCT Int. Appl. WO
2006077954.
53%
OH
CO2Et
CO2Et
OH
O
CN
40
CN
39
X
O
O
3. (a) Devaux, J.-F.; Hanna, I.; Lallemand, J.-Y. J. Org. Chem. 1993, 58, 2349–2350;
(b) Devaux, J.-F.; Hanna, I.; Lallemand, J.-Y.; Prange, T. J. Chem. Res. Syn. 1996,
32–33; (c) Devaux, J.-F.; Hanna, I.; Lallemand, J.-Y. J. Org. Chem. 1997, 62, 5062–
5068; (d) Gentric, L.; Hanna, I.; Ricard, L. Org. Lett. 2003, 5, 1139–1142; (e)
Gentric, L.; Hanna, I.; Huboux, A.; Zaghdoudi, R. Org. Lett. 2003, 5, 3631–3634;
(f) Mehta, G.; Reddy, K. S. Synlett 1996, 625–627; (g) Kito, M.; Sakai, T.; Haruta,
N.; Shirahama, H.; Matsuda, F. Synlett 1996, 1057–1060; (h) Kito, M.; Sakai, T.;
Shirahama, H.; Miyashita, M.; Matsuda, F. Synlett 1997, 219–220; (i) Matsuda,
F.; Kito, M.; Sakai, T.; Okada, N.; Miyashita, M.; Shirahama, H. Tetrahedron 1999,
55, 14369–14380; (j) Paquette, L. A.; Guevel, R.; Sakamoto, S.; Kim, I. H.;
Crawford, J. J. Org. Chem. 2003, 68, 6096–6107; (k) Paquette, L. A.; Efremov, I.;
Liu, Z. J. Org. Chem. 2005, 70, 505–509; (l) Paquette, L. A.; Efremov, I. J. Org.
Chem. 2005, 70, 510–513; (m) Paquette, L. A.; Liu, Z.; Efremov, I. J. Org. Chem.
2005, 70, 514–518; (n) Morency, L.; Barriault, L. Tetrahedron Lett. 2004, 45,
6105–6107; (o) Morency, L.; Barriault, L. J. Org. Chem. 2005, 70, 8841–8853; (p)
Tessier, G.; Barriault, L. Org. Prep. Proced. Int. 2007, 37, 313–353; (q) Grise, C. M.;
Tessier, G.; Barriault, L. Org. Lett. 2007, 9, 1545–1548; (r) Souweha, M. S.;
Enright, G. D.; Fallis, A. G. Org. Lett. 2007, 9, 5163–5166; (s) Maimone, T. J.;
Voica, A.-F.; Baran, P. S. Angew. Chem., Int. Ed. 2008, 47, 3054–3056.
4. Rajanbabu, R. V.; Nugent, W. A. J. Am. Chem. Soc. 1994, 116, 986–997.
5. Morton, J. G. M.; Kwon, L. D.; Freeman, D. J.; Njardarson, J. T. Synlett 2009, 23–
27.
6. (a) Adler, E.; Brasen, S.; Miyake, H. Acta. Chem. Scand. 1971, 25, 2055–2069; (b)
Becker, H.-D.; Bremholt, T.; Adler, E. Tetrahedron Lett. 1972, 13, 4205–4208.
7. (a) Corey, E. J.; Dittami, J. P. J. Am. Chem. Soc. 1985, 107, 256–257; (b) Haseltine,
J. N.; Cabal, M. P.; Mantlo, N. B.; Iwasawa, N.; Yamashita, D. S.; Coleman, R. S.;
Danishefsky, S. J.; Chulte, G. K. J. Am. Chem. Soc. 1991, 113, 3850–3866; (c)
Singh, V. Acc. Chem. Res. 1999, 32, 324–333.
8. (a) Becker, H.-D.; Bremholt, T. Tetrahedron Lett. 1973, 14, 197–200; (b)
Yamashita, D. S.; Rocco, V. P.; Danishefsky, S. J. Tetrahedron Lett. 1991, 32,
6667–6670; (c) Tius, M. A.; Reddy, N. K. Synth. Commun. 1994, 24, 859–869.
9. (a) Sher, F. T.; Berchtold, G. A. J. Org. Chem. 1977, 42, 2569–2574; (b) Frieze, D.
M.; Berchtold, G. A. Tetrahedron Lett. 1978, 19, 4607–4610; (c) van Tamelen, E.
E.; Demers, J. P.; Taylor, E. G.; Koller, K. J. Am. Chem. Soc. 1980, 102, 5424–5425;
(d) Lai, C. K.; Buckanin, R. S.; Chen, S. J.; Zimmerman, D. F.; Sher, F. T.; Berchtold,
G. A. J. Org. Chem. 1982, 47, 2364–2369; (e) Yang, D.; Ye, X.-Y.; Xu, M.; Pang, K.-
W.; Zou, N.; Letcher, R. M. J. Org. Chem. 1998, 63, 6446–6447; (f) Yang, D.; Ye,
X.-Y.; Xu, M. J. Org. Chem. 2000, 65, 2208–2217.
Scheme 7. Synthesis and evaluation of a more complex benzofuranone. Reagents
and conditions: (a) MOMCl, iPr2NEt, DCM; (b) EtOH, K2CO3; (c) ClCH2CN, K2CO3,
MeCN, rt; (d) tBuOK, PhH, 0–25 °C; (e) NaH, THF, then NaI, 35, rt; (f) 5% aq HCl,
EtOH; (g) NaBH4, MeOH, 0 °C.
congested than its predecessor. This is reflected in a slower reduc-
tion and lower yielding Adler–Becker oxidation (30). Careful heat-
ing of the dearomatized core afforded the highly strained
cycloadduct 31, albeit in non-optimized yields. In order to better
assess the scope of this approach we also accessed prenylated core
32 using an identical synthetic approach. This tetraene resisted all
attempts to form 33, with decomposition occurring at elevated
temperatures.
Having realized moderate success in both the oxidative dearo-
matization and subsequent Diels–Alder cycloaddition to 31, we
investigated this benzofuran framework further using more ad-
vanced synthetic components (Scheme 7). Transesterification of
the known benzodioxanone 3412 with EtOH gave 35. Alkylation
of the free phenol with chloroacetonitrile and subsequent conden-
sation yielded the b-ketonitrile 36. Keeping in mind the failure of
the bis-prenyl derivative 32 to undergo Diels–Alder cycloaddition,
we decided to use an electronically matched enoate dienophile in
this route. Selective C-alkylation with bromo enoate 3713 was thus
used, affording 38. Deprotection of the phenolic MOM-group and
reduction of the ketone set the stage for the critical dearomatiza-
tion step. Unfortunately, diol 39 resisted all our attempts14 to con-
vert it to spiro-dienone 40. Indeed, when any reaction at all
occurred it was reoxidation to the ketone.
10. (a) Kelly, S. E.; Vanderplas, B. C. J. Org. Chem. 1991, 56, 1325–1327; (b) Li, W.-S.;
Guo, Z.; Thornton, J.; Katipally, K.; Polniaszek, R.; Thottathil, J.; Wong, M.
Tetrahedron Lett. 2002, 43, 1923–1925.
In summary, despite this route being a dead end for our vinigrol
campaign it does serve to highlight both the incredible untapped
synthetic potential of the Adler–Becker dearomatization in rapidly
accessing complex structures and the need that still exists for reac-
tive, selective oxidizing agents for such processes.
11. (a) Borchardt, R.; Huber, J. A. J. Med. Chem. 1975, 18, 120–122; (b) Tanemura, K.;
Suzuki, T.; Horaguchi, T.; Sudo, M. J. Heterocycl. Chem. 1991, 28, 305–309.
12. (a) Hadfield, A.; Schweitzer, H.; Trova, M. P.; Green, K. Synth. Commun. 1994, 24,
1025–1028; (b) Bajwa, N.; Jennin, M. P. J. Org. Chem. 2006, 71, 3646–3649.
13. (a) Tamazaki, N.; Dokoshi, W.; Kibayashi, C. Org. Lett. 2001, 3, 193–196; (b)
Wolff, M.; Seemann, M.; Grosdeange-Billiard, C.; Tritsch, D.; Campos, N.;
Rodriguez-Concepcion, M.; Boronat, A.; Rohmer, M. Tetrahedron Lett. 2002, 43,
2555–2559.
Acknowledgements
14. Conditions attempted include: NaIO4, MeOH/H2O; NaIO4, AcOH; NaBiO3,
AcOH; Cu(CH3CN)4PF6, morpholine, DIEA, CH2Cl2, O2; CuCl2–morpholine,
MeCN, MeOH, O2; CuCl2, pyridine, MeOH, H2O; PhI(OAc)2, CF3CH2OH; H5IO6,
wet MeOH; H5IO6, THF.
We thank Cornell University for support. We are grateful for an
Einhorn Summer Undergraduate Research Fellowship (JDF). This
material is based upon work supported under a National Science
Foundation Graduate Research Fellowship (JGMM).