S. Ma et al. / Tetrahedron: Asymmetry 12 (2001) 193–195
195
Ph
n-Hep
.
Pd2(dba)3 CHCl3 (2.5 mol%)
n-Hep
2c (20 mol%)
(i-Pr)2NEt, CH3CN, -15 oC
+
PhI
O
COOH
O
(+)-3a
time (h)
yield (%)
e.e. (%)
8
20
30
48
192
17
30
34
57
76
47
51
52
51
29
Scheme 1.
have little effect on the yield and e.e. and additionally,
the e.e. can be affected greatly by steric hindrance from
the substituent group, such as c-hex (Table 2, entry 9).
When 2-methyl-4-phenyl-2,3-butenoic acid was used
only the cycloisomerisation product 3j% was formed
(Table 2, entry 10).
94978; (c) Lee, G. C. M. Eur. Pat. EP. 372,940, 1990;
Chem. Abstr. 1990, 113, 191137j; (d) Ducharme, Y.; Gau-
thier, J. Y.; Prasit, P.; Leblanc, Y.; Wang, Z.; Leger, S;
Thrien, M. PCT Int. Appl. WO 95,00,501, 1995; Chem.
Abstr. 1996, 124, 55954y; (e) Lee Gary, C. M.; Gast, M. E.
PCT Int. Appl. WO. 91 16,055, 1991: Chem. Abstr. 1992,
116, 59197m.
The e.e. of the product 3a did not change with length-
ened reaction time of 48 hours. However, after 8 days,
the reaction afforded (+)-3a in a higher yield (76%) but
with lower enantioselectivity (29% e.e.) (Scheme 1).
2. (a) Ma, S.; Shi, Z. J. Org. Chem. 1998, 63, 6387; (b) Ma,
S.; Duan, D.; Shi, Z. Org. Lett. 2000, 2, 1419; (c) Ma, S.;
Wu, S. J. Org. Chem. 1999, 64, 9314; (d) Ma, S.; Shi, Z.;
Yu, Z. Tetrahedron Lett. 1999, 40, 2393; (e) Ma, S.; Shi,
Z.; Yu, Z. Tetrahedron 1999, 40, 12137.
In conclusion, we have developed a silver(I) free reac-
tion for the coupling cyclisation reaction of aromatic
iodides and 2,3-allenoic acids.8,9 Based on this, the first
example of the catalytic enantioselective synthesis of
b-aryl butenolides was observed. According to the
results presented in this paper, the reaction is believed
to occur via carbopalladation of the allene to form a
p-allyl-palladium intermediate, followed by an enan-
tioselective intramolecular allylic substitution.2a Further
studies in this area are now being carried out in our
laboratory.
3. (a) Gawronski, J. K.; van Oeveren, A.; van der Deen, H.;
Leung, C. W.; Feringa, B. L. J. Org. Chem. 1996, 61, 1513;
(b) Gawronski, J. K.; Chen, Q.; Geng, Z.; Huang, B.;
Martin, M. R.; Mateo, A. I.; Brzostowska, M.; Rych-
lewska, U.; Feringa, B. Chirality 1997, 9, 537.
4. For such a reaction with Ag+, the direct cyclisation
catalysed by Ag+ followed by transmetallation and reduc-
tive elimination would make any enantioselective synthesis
of butenolides from racemic 2,3-allenoic acids impossible.
See Ref. 2a.
5. The ligands 2a–2e were prepared according to the known
method: Matt, P. Von; Lloyd-Jones, G. C.; Minidis, A. B.
E.; Pfaltz, A.; Macko, L.; Neuburger, M.; Zehnder, M.;
Ruegger, H.; Pregosin, P. S. Helv. Chim. Acta 1995, 78,
265.
Acknowledgements
6. (a) Marshall, A.; Wolf, M. A.; Wallace, E. M. J. Org.
Chem. 1997, 62, 367; (b) Marshall, A.; Bartley, S.; Wal-
lace, M. J. Org. Chem. 1996, 61, 5729; (c) Marshall, A.;
Hinkle, W. J. Org. Chem. 1996, 61, 4247.
7. Both the yield and e.e. value of 1a were determined by its
conversion to the corresponding ethyl ester via evapora-
tion of the solvent followed by addition of DMF, (i-
Pr)2NEt and EtI.
We thank the National Natural Science Foundation of
China (Project No. 29932020) and the Major State
Basic Research Development Program (Grant No.
G2000077500) for financial support.
References
8. Venkruijsse, H. D.; Brandsma, L. Synthesis of Acetylenes,
Allenes and Cumulenes. A Laboratory Manual; Elsevier:
Amsterdam, The Netherlands, 1981; p. 33.
1. (a) Brima, T. S. US 4,968,817, 1990; Chem. Abstr. 1991,
114, 185246y; (b) Tanabe, A. Jpn. Kokai. Tokyo. Koho
JP. 63,211,276 [88,211,276], 1988; Chem. Abstr. 1989, 110,
9. Bestmann, H. J.; Hartung, H. Chem. Ber. 1966, 99, 1198.
.